Solve for x
x<-\frac{7}{6}
Graph
Share
Copied to clipboard
\frac{4}{3}\times 3x+\frac{4}{3}\left(-2\right)-3\left(\frac{1}{3}x-1\right)<\frac{4}{5}\left(2x-1\right)-\frac{1}{2}
Use the distributive property to multiply \frac{4}{3} by 3x-2.
4x+\frac{4}{3}\left(-2\right)-3\left(\frac{1}{3}x-1\right)<\frac{4}{5}\left(2x-1\right)-\frac{1}{2}
Cancel out 3 and 3.
4x+\frac{4\left(-2\right)}{3}-3\left(\frac{1}{3}x-1\right)<\frac{4}{5}\left(2x-1\right)-\frac{1}{2}
Express \frac{4}{3}\left(-2\right) as a single fraction.
4x+\frac{-8}{3}-3\left(\frac{1}{3}x-1\right)<\frac{4}{5}\left(2x-1\right)-\frac{1}{2}
Multiply 4 and -2 to get -8.
4x-\frac{8}{3}-3\left(\frac{1}{3}x-1\right)<\frac{4}{5}\left(2x-1\right)-\frac{1}{2}
Fraction \frac{-8}{3} can be rewritten as -\frac{8}{3} by extracting the negative sign.
4x-\frac{8}{3}-3\times \frac{1}{3}x+3<\frac{4}{5}\left(2x-1\right)-\frac{1}{2}
Use the distributive property to multiply -3 by \frac{1}{3}x-1.
4x-\frac{8}{3}-x+3<\frac{4}{5}\left(2x-1\right)-\frac{1}{2}
Multiply -3 times \frac{1}{3}.
3x-\frac{8}{3}+3<\frac{4}{5}\left(2x-1\right)-\frac{1}{2}
Combine 4x and -x to get 3x.
3x-\frac{8}{3}+\frac{9}{3}<\frac{4}{5}\left(2x-1\right)-\frac{1}{2}
Convert 3 to fraction \frac{9}{3}.
3x+\frac{-8+9}{3}<\frac{4}{5}\left(2x-1\right)-\frac{1}{2}
Since -\frac{8}{3} and \frac{9}{3} have the same denominator, add them by adding their numerators.
3x+\frac{1}{3}<\frac{4}{5}\left(2x-1\right)-\frac{1}{2}
Add -8 and 9 to get 1.
3x+\frac{1}{3}<\frac{4}{5}\times 2x+\frac{4}{5}\left(-1\right)-\frac{1}{2}
Use the distributive property to multiply \frac{4}{5} by 2x-1.
3x+\frac{1}{3}<\frac{4\times 2}{5}x+\frac{4}{5}\left(-1\right)-\frac{1}{2}
Express \frac{4}{5}\times 2 as a single fraction.
3x+\frac{1}{3}<\frac{8}{5}x+\frac{4}{5}\left(-1\right)-\frac{1}{2}
Multiply 4 and 2 to get 8.
3x+\frac{1}{3}<\frac{8}{5}x-\frac{4}{5}-\frac{1}{2}
Multiply \frac{4}{5} and -1 to get -\frac{4}{5}.
3x+\frac{1}{3}<\frac{8}{5}x-\frac{8}{10}-\frac{5}{10}
Least common multiple of 5 and 2 is 10. Convert -\frac{4}{5} and \frac{1}{2} to fractions with denominator 10.
3x+\frac{1}{3}<\frac{8}{5}x+\frac{-8-5}{10}
Since -\frac{8}{10} and \frac{5}{10} have the same denominator, subtract them by subtracting their numerators.
3x+\frac{1}{3}<\frac{8}{5}x-\frac{13}{10}
Subtract 5 from -8 to get -13.
3x+\frac{1}{3}-\frac{8}{5}x<-\frac{13}{10}
Subtract \frac{8}{5}x from both sides.
\frac{7}{5}x+\frac{1}{3}<-\frac{13}{10}
Combine 3x and -\frac{8}{5}x to get \frac{7}{5}x.
\frac{7}{5}x<-\frac{13}{10}-\frac{1}{3}
Subtract \frac{1}{3} from both sides.
\frac{7}{5}x<-\frac{39}{30}-\frac{10}{30}
Least common multiple of 10 and 3 is 30. Convert -\frac{13}{10} and \frac{1}{3} to fractions with denominator 30.
\frac{7}{5}x<\frac{-39-10}{30}
Since -\frac{39}{30} and \frac{10}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{7}{5}x<-\frac{49}{30}
Subtract 10 from -39 to get -49.
x<-\frac{49}{30}\times \frac{5}{7}
Multiply both sides by \frac{5}{7}, the reciprocal of \frac{7}{5}. Since \frac{7}{5} is positive, the inequality direction remains the same.
x<\frac{-49\times 5}{30\times 7}
Multiply -\frac{49}{30} times \frac{5}{7} by multiplying numerator times numerator and denominator times denominator.
x<\frac{-245}{210}
Do the multiplications in the fraction \frac{-49\times 5}{30\times 7}.
x<-\frac{7}{6}
Reduce the fraction \frac{-245}{210} to lowest terms by extracting and canceling out 35.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}