Evaluate
2\left(a+2\right)
Expand
2a+4
Quiz
Polynomial
5 problems similar to:
\frac { 4 } { 3 } ( 12 - 3 a ) - \frac { 3 } { 4 } ( 16 - 8 a )
Share
Copied to clipboard
\frac{4}{3}\times 12+\frac{4}{3}\left(-3\right)a-\frac{3}{4}\left(16-8a\right)
Use the distributive property to multiply \frac{4}{3} by 12-3a.
\frac{4\times 12}{3}+\frac{4}{3}\left(-3\right)a-\frac{3}{4}\left(16-8a\right)
Express \frac{4}{3}\times 12 as a single fraction.
\frac{48}{3}+\frac{4}{3}\left(-3\right)a-\frac{3}{4}\left(16-8a\right)
Multiply 4 and 12 to get 48.
16+\frac{4}{3}\left(-3\right)a-\frac{3}{4}\left(16-8a\right)
Divide 48 by 3 to get 16.
16+\frac{4\left(-3\right)}{3}a-\frac{3}{4}\left(16-8a\right)
Express \frac{4}{3}\left(-3\right) as a single fraction.
16+\frac{-12}{3}a-\frac{3}{4}\left(16-8a\right)
Multiply 4 and -3 to get -12.
16-4a-\frac{3}{4}\left(16-8a\right)
Divide -12 by 3 to get -4.
16-4a-\frac{3}{4}\times 16-\frac{3}{4}\left(-8\right)a
Use the distributive property to multiply -\frac{3}{4} by 16-8a.
16-4a+\frac{-3\times 16}{4}-\frac{3}{4}\left(-8\right)a
Express -\frac{3}{4}\times 16 as a single fraction.
16-4a+\frac{-48}{4}-\frac{3}{4}\left(-8\right)a
Multiply -3 and 16 to get -48.
16-4a-12-\frac{3}{4}\left(-8\right)a
Divide -48 by 4 to get -12.
16-4a-12+\frac{-3\left(-8\right)}{4}a
Express -\frac{3}{4}\left(-8\right) as a single fraction.
16-4a-12+\frac{24}{4}a
Multiply -3 and -8 to get 24.
16-4a-12+6a
Divide 24 by 4 to get 6.
4-4a+6a
Subtract 12 from 16 to get 4.
4+2a
Combine -4a and 6a to get 2a.
\frac{4}{3}\times 12+\frac{4}{3}\left(-3\right)a-\frac{3}{4}\left(16-8a\right)
Use the distributive property to multiply \frac{4}{3} by 12-3a.
\frac{4\times 12}{3}+\frac{4}{3}\left(-3\right)a-\frac{3}{4}\left(16-8a\right)
Express \frac{4}{3}\times 12 as a single fraction.
\frac{48}{3}+\frac{4}{3}\left(-3\right)a-\frac{3}{4}\left(16-8a\right)
Multiply 4 and 12 to get 48.
16+\frac{4}{3}\left(-3\right)a-\frac{3}{4}\left(16-8a\right)
Divide 48 by 3 to get 16.
16+\frac{4\left(-3\right)}{3}a-\frac{3}{4}\left(16-8a\right)
Express \frac{4}{3}\left(-3\right) as a single fraction.
16+\frac{-12}{3}a-\frac{3}{4}\left(16-8a\right)
Multiply 4 and -3 to get -12.
16-4a-\frac{3}{4}\left(16-8a\right)
Divide -12 by 3 to get -4.
16-4a-\frac{3}{4}\times 16-\frac{3}{4}\left(-8\right)a
Use the distributive property to multiply -\frac{3}{4} by 16-8a.
16-4a+\frac{-3\times 16}{4}-\frac{3}{4}\left(-8\right)a
Express -\frac{3}{4}\times 16 as a single fraction.
16-4a+\frac{-48}{4}-\frac{3}{4}\left(-8\right)a
Multiply -3 and 16 to get -48.
16-4a-12-\frac{3}{4}\left(-8\right)a
Divide -48 by 4 to get -12.
16-4a-12+\frac{-3\left(-8\right)}{4}a
Express -\frac{3}{4}\left(-8\right) as a single fraction.
16-4a-12+\frac{24}{4}a
Multiply -3 and -8 to get 24.
16-4a-12+6a
Divide 24 by 4 to get 6.
4-4a+6a
Subtract 12 from 16 to get 4.
4+2a
Combine -4a and 6a to get 2a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}