Verify
false
Share
Copied to clipboard
\frac{4\times 4}{3\times 3}+\frac{4}{3}+\frac{4}{3}=\frac{4}{3}
Multiply \frac{4}{3} times \frac{4}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{16}{9}+\frac{4}{3}+\frac{4}{3}=\frac{4}{3}
Do the multiplications in the fraction \frac{4\times 4}{3\times 3}.
\frac{16}{9}+\frac{12}{9}+\frac{4}{3}=\frac{4}{3}
Least common multiple of 9 and 3 is 9. Convert \frac{16}{9} and \frac{4}{3} to fractions with denominator 9.
\frac{16+12}{9}+\frac{4}{3}=\frac{4}{3}
Since \frac{16}{9} and \frac{12}{9} have the same denominator, add them by adding their numerators.
\frac{28}{9}+\frac{4}{3}=\frac{4}{3}
Add 16 and 12 to get 28.
\frac{28}{9}+\frac{12}{9}=\frac{4}{3}
Least common multiple of 9 and 3 is 9. Convert \frac{28}{9} and \frac{4}{3} to fractions with denominator 9.
\frac{28+12}{9}=\frac{4}{3}
Since \frac{28}{9} and \frac{12}{9} have the same denominator, add them by adding their numerators.
\frac{40}{9}=\frac{4}{3}
Add 28 and 12 to get 40.
\frac{40}{9}=\frac{12}{9}
Least common multiple of 9 and 3 is 9. Convert \frac{40}{9} and \frac{4}{3} to fractions with denominator 9.
\text{false}
Compare \frac{40}{9} and \frac{12}{9}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}