Solve for h
h = \frac{273}{44} = 6\frac{9}{44} \approx 6.204545455
Share
Copied to clipboard
\frac{4\times 22}{3\times 7}\times 42\times 4-2=\frac{22}{7}\times 6\times 6h
Multiply \frac{4}{3} times \frac{22}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{88}{21}\times 42\times 4-2=\frac{22}{7}\times 6\times 6h
Do the multiplications in the fraction \frac{4\times 22}{3\times 7}.
\frac{88\times 42}{21}\times 4-2=\frac{22}{7}\times 6\times 6h
Express \frac{88}{21}\times 42 as a single fraction.
\frac{3696}{21}\times 4-2=\frac{22}{7}\times 6\times 6h
Multiply 88 and 42 to get 3696.
176\times 4-2=\frac{22}{7}\times 6\times 6h
Divide 3696 by 21 to get 176.
704-2=\frac{22}{7}\times 6\times 6h
Multiply 176 and 4 to get 704.
702=\frac{22}{7}\times 6\times 6h
Subtract 2 from 704 to get 702.
702=\frac{22\times 6}{7}\times 6h
Express \frac{22}{7}\times 6 as a single fraction.
702=\frac{132}{7}\times 6h
Multiply 22 and 6 to get 132.
702=\frac{132\times 6}{7}h
Express \frac{132}{7}\times 6 as a single fraction.
702=\frac{792}{7}h
Multiply 132 and 6 to get 792.
\frac{792}{7}h=702
Swap sides so that all variable terms are on the left hand side.
h=702\times \frac{7}{792}
Multiply both sides by \frac{7}{792}, the reciprocal of \frac{792}{7}.
h=\frac{702\times 7}{792}
Express 702\times \frac{7}{792} as a single fraction.
h=\frac{4914}{792}
Multiply 702 and 7 to get 4914.
h=\frac{273}{44}
Reduce the fraction \frac{4914}{792} to lowest terms by extracting and canceling out 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}