Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Share

\frac{\frac{4}{3}\sqrt{\frac{28+2}{7}}\left(-\frac{3}{2}\right)\sqrt{\frac{2\times 3+2}{3}}}{\frac{1}{2}}\sqrt{\frac{6\times 7+3}{7}}
Multiply 4 and 7 to get 28.
\frac{\frac{4}{3}\sqrt{\frac{30}{7}}\left(-\frac{3}{2}\right)\sqrt{\frac{2\times 3+2}{3}}}{\frac{1}{2}}\sqrt{\frac{6\times 7+3}{7}}
Add 28 and 2 to get 30.
\frac{\frac{4}{3}\times \frac{\sqrt{30}}{\sqrt{7}}\left(-\frac{3}{2}\right)\sqrt{\frac{2\times 3+2}{3}}}{\frac{1}{2}}\sqrt{\frac{6\times 7+3}{7}}
Rewrite the square root of the division \sqrt{\frac{30}{7}} as the division of square roots \frac{\sqrt{30}}{\sqrt{7}}.
\frac{\frac{4}{3}\times \frac{\sqrt{30}\sqrt{7}}{\left(\sqrt{7}\right)^{2}}\left(-\frac{3}{2}\right)\sqrt{\frac{2\times 3+2}{3}}}{\frac{1}{2}}\sqrt{\frac{6\times 7+3}{7}}
Rationalize the denominator of \frac{\sqrt{30}}{\sqrt{7}} by multiplying numerator and denominator by \sqrt{7}.
\frac{\frac{4}{3}\times \frac{\sqrt{30}\sqrt{7}}{7}\left(-\frac{3}{2}\right)\sqrt{\frac{2\times 3+2}{3}}}{\frac{1}{2}}\sqrt{\frac{6\times 7+3}{7}}
The square of \sqrt{7} is 7.
\frac{\frac{4}{3}\times \frac{\sqrt{210}}{7}\left(-\frac{3}{2}\right)\sqrt{\frac{2\times 3+2}{3}}}{\frac{1}{2}}\sqrt{\frac{6\times 7+3}{7}}
To multiply \sqrt{30} and \sqrt{7}, multiply the numbers under the square root.
\frac{\frac{4\left(-3\right)}{3\times 2}\times \frac{\sqrt{210}}{7}\sqrt{\frac{2\times 3+2}{3}}}{\frac{1}{2}}\sqrt{\frac{6\times 7+3}{7}}
Multiply \frac{4}{3} times -\frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{-12}{6}\times \frac{\sqrt{210}}{7}\sqrt{\frac{2\times 3+2}{3}}}{\frac{1}{2}}\sqrt{\frac{6\times 7+3}{7}}
Do the multiplications in the fraction \frac{4\left(-3\right)}{3\times 2}.
\frac{-2\times \frac{\sqrt{210}}{7}\sqrt{\frac{2\times 3+2}{3}}}{\frac{1}{2}}\sqrt{\frac{6\times 7+3}{7}}
Divide -12 by 6 to get -2.
\frac{-2\times \frac{\sqrt{210}}{7}\sqrt{\frac{6+2}{3}}}{\frac{1}{2}}\sqrt{\frac{6\times 7+3}{7}}
Multiply 2 and 3 to get 6.
\frac{-2\times \frac{\sqrt{210}}{7}\sqrt{\frac{8}{3}}}{\frac{1}{2}}\sqrt{\frac{6\times 7+3}{7}}
Add 6 and 2 to get 8.
\frac{-2\times \frac{\sqrt{210}}{7}\times \frac{\sqrt{8}}{\sqrt{3}}}{\frac{1}{2}}\sqrt{\frac{6\times 7+3}{7}}
Rewrite the square root of the division \sqrt{\frac{8}{3}} as the division of square roots \frac{\sqrt{8}}{\sqrt{3}}.
\frac{-2\times \frac{\sqrt{210}}{7}\times \frac{2\sqrt{2}}{\sqrt{3}}}{\frac{1}{2}}\sqrt{\frac{6\times 7+3}{7}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{-2\times \frac{\sqrt{210}}{7}\times \frac{2\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}{\frac{1}{2}}\sqrt{\frac{6\times 7+3}{7}}
Rationalize the denominator of \frac{2\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{-2\times \frac{\sqrt{210}}{7}\times \frac{2\sqrt{2}\sqrt{3}}{3}}{\frac{1}{2}}\sqrt{\frac{6\times 7+3}{7}}
The square of \sqrt{3} is 3.
\frac{-2\times \frac{\sqrt{210}}{7}\times \frac{2\sqrt{6}}{3}}{\frac{1}{2}}\sqrt{\frac{6\times 7+3}{7}}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{\frac{-2\sqrt{210}}{7}\times \frac{2\sqrt{6}}{3}}{\frac{1}{2}}\sqrt{\frac{6\times 7+3}{7}}
Express -2\times \frac{\sqrt{210}}{7} as a single fraction.
\frac{\frac{-2\sqrt{210}\times 2\sqrt{6}}{7\times 3}}{\frac{1}{2}}\sqrt{\frac{6\times 7+3}{7}}
Multiply \frac{-2\sqrt{210}}{7} times \frac{2\sqrt{6}}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{-2\sqrt{210}\times 2\sqrt{6}\times 2}{7\times 3}\sqrt{\frac{6\times 7+3}{7}}
Divide \frac{-2\sqrt{210}\times 2\sqrt{6}}{7\times 3} by \frac{1}{2} by multiplying \frac{-2\sqrt{210}\times 2\sqrt{6}}{7\times 3} by the reciprocal of \frac{1}{2}.
\frac{2\sqrt{210}\times 2\sqrt{6}\times 2}{-7\times 3}\sqrt{\frac{6\times 7+3}{7}}
Cancel out -1 in both numerator and denominator.
\frac{2\sqrt{6}\sqrt{35}\times 2\sqrt{6}\times 2}{-7\times 3}\sqrt{\frac{6\times 7+3}{7}}
Factor 210=6\times 35. Rewrite the square root of the product \sqrt{6\times 35} as the product of square roots \sqrt{6}\sqrt{35}.
\frac{2\times 6\times 2\sqrt{35}\times 2}{-7\times 3}\sqrt{\frac{6\times 7+3}{7}}
Multiply \sqrt{6} and \sqrt{6} to get 6.
\frac{12\times 2\sqrt{35}\times 2}{-7\times 3}\sqrt{\frac{6\times 7+3}{7}}
Multiply 2 and 6 to get 12.
\frac{24\sqrt{35}\times 2}{-7\times 3}\sqrt{\frac{6\times 7+3}{7}}
Multiply 12 and 2 to get 24.
\frac{48\sqrt{35}}{-7\times 3}\sqrt{\frac{6\times 7+3}{7}}
Multiply 24 and 2 to get 48.
\frac{48\sqrt{35}}{-21}\sqrt{\frac{6\times 7+3}{7}}
Multiply -7 and 3 to get -21.
-\frac{16}{7}\sqrt{35}\sqrt{\frac{6\times 7+3}{7}}
Divide 48\sqrt{35} by -21 to get -\frac{16}{7}\sqrt{35}.
-\frac{16}{7}\sqrt{35}\sqrt{\frac{42+3}{7}}
Multiply 6 and 7 to get 42.
-\frac{16}{7}\sqrt{35}\sqrt{\frac{45}{7}}
Add 42 and 3 to get 45.
-\frac{16}{7}\sqrt{35}\times \frac{\sqrt{45}}{\sqrt{7}}
Rewrite the square root of the division \sqrt{\frac{45}{7}} as the division of square roots \frac{\sqrt{45}}{\sqrt{7}}.
-\frac{16}{7}\sqrt{35}\times \frac{3\sqrt{5}}{\sqrt{7}}
Factor 45=3^{2}\times 5. Rewrite the square root of the product \sqrt{3^{2}\times 5} as the product of square roots \sqrt{3^{2}}\sqrt{5}. Take the square root of 3^{2}.
-\frac{16}{7}\sqrt{35}\times \frac{3\sqrt{5}\sqrt{7}}{\left(\sqrt{7}\right)^{2}}
Rationalize the denominator of \frac{3\sqrt{5}}{\sqrt{7}} by multiplying numerator and denominator by \sqrt{7}.
-\frac{16}{7}\sqrt{35}\times \frac{3\sqrt{5}\sqrt{7}}{7}
The square of \sqrt{7} is 7.
-\frac{16}{7}\sqrt{35}\times \frac{3\sqrt{35}}{7}
To multiply \sqrt{5} and \sqrt{7}, multiply the numbers under the square root.
\frac{-16\times 3\sqrt{35}}{7\times 7}\sqrt{35}
Multiply -\frac{16}{7} times \frac{3\sqrt{35}}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{-48\sqrt{35}}{7\times 7}\sqrt{35}
Multiply -16 and 3 to get -48.
\frac{-48\sqrt{35}}{49}\sqrt{35}
Multiply 7 and 7 to get 49.
\frac{-48\sqrt{35}\sqrt{35}}{49}
Express \frac{-48\sqrt{35}}{49}\sqrt{35} as a single fraction.
\frac{-48\times 35}{49}
Multiply \sqrt{35} and \sqrt{35} to get 35.
\frac{-1680}{49}
Multiply -48 and 35 to get -1680.
-\frac{240}{7}
Reduce the fraction \frac{-1680}{49} to lowest terms by extracting and canceling out 7.