Solve for x
x = \frac{8}{5} = 1\frac{3}{5} = 1.6
Graph
Share
Copied to clipboard
\frac{4\times 2}{6}+\frac{x}{6}=x
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 6 is 6. Multiply \frac{4}{3} times \frac{2}{2}.
\frac{4\times 2+x}{6}=x
Since \frac{4\times 2}{6} and \frac{x}{6} have the same denominator, add them by adding their numerators.
\frac{8+x}{6}=x
Do the multiplications in 4\times 2+x.
\frac{4}{3}+\frac{1}{6}x=x
Divide each term of 8+x by 6 to get \frac{4}{3}+\frac{1}{6}x.
\frac{4}{3}+\frac{1}{6}x-x=0
Subtract x from both sides.
\frac{4}{3}-\frac{5}{6}x=0
Combine \frac{1}{6}x and -x to get -\frac{5}{6}x.
-\frac{5}{6}x=-\frac{4}{3}
Subtract \frac{4}{3} from both sides. Anything subtracted from zero gives its negation.
x=-\frac{4}{3}\left(-\frac{6}{5}\right)
Multiply both sides by -\frac{6}{5}, the reciprocal of -\frac{5}{6}.
x=\frac{-4\left(-6\right)}{3\times 5}
Multiply -\frac{4}{3} times -\frac{6}{5} by multiplying numerator times numerator and denominator times denominator.
x=\frac{24}{15}
Do the multiplications in the fraction \frac{-4\left(-6\right)}{3\times 5}.
x=\frac{8}{5}
Reduce the fraction \frac{24}{15} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}