Evaluate
\frac{644}{405}\approx 1.590123457
Factor
\frac{2 ^ {2} \cdot 7 \cdot 23}{3 ^ {4} \cdot 5} = 1\frac{239}{405} = 1.5901234567901235
Share
Copied to clipboard
\frac{4}{3}+\frac{7}{9}\left(\frac{9}{63}+\frac{28}{63}\right)-\frac{1}{5}
Least common multiple of 7 and 9 is 63. Convert \frac{1}{7} and \frac{4}{9} to fractions with denominator 63.
\frac{4}{3}+\frac{7}{9}\times \frac{9+28}{63}-\frac{1}{5}
Since \frac{9}{63} and \frac{28}{63} have the same denominator, add them by adding their numerators.
\frac{4}{3}+\frac{7}{9}\times \frac{37}{63}-\frac{1}{5}
Add 9 and 28 to get 37.
\frac{4}{3}+\frac{7\times 37}{9\times 63}-\frac{1}{5}
Multiply \frac{7}{9} times \frac{37}{63} by multiplying numerator times numerator and denominator times denominator.
\frac{4}{3}+\frac{259}{567}-\frac{1}{5}
Do the multiplications in the fraction \frac{7\times 37}{9\times 63}.
\frac{4}{3}+\frac{37}{81}-\frac{1}{5}
Reduce the fraction \frac{259}{567} to lowest terms by extracting and canceling out 7.
\frac{108}{81}+\frac{37}{81}-\frac{1}{5}
Least common multiple of 3 and 81 is 81. Convert \frac{4}{3} and \frac{37}{81} to fractions with denominator 81.
\frac{108+37}{81}-\frac{1}{5}
Since \frac{108}{81} and \frac{37}{81} have the same denominator, add them by adding their numerators.
\frac{145}{81}-\frac{1}{5}
Add 108 and 37 to get 145.
\frac{725}{405}-\frac{81}{405}
Least common multiple of 81 and 5 is 405. Convert \frac{145}{81} and \frac{1}{5} to fractions with denominator 405.
\frac{725-81}{405}
Since \frac{725}{405} and \frac{81}{405} have the same denominator, subtract them by subtracting their numerators.
\frac{644}{405}
Subtract 81 from 725 to get 644.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}