Evaluate
\frac{221}{90}\approx 2.455555556
Factor
\frac{13 \cdot 17}{2 \cdot 3 ^ {2} \cdot 5} = 2\frac{41}{90} = 2.4555555555555557
Share
Copied to clipboard
\frac{4}{3}+\frac{7}{5}\left(\frac{9}{18}+\frac{8}{18}\right)-\frac{1}{5}
Least common multiple of 2 and 9 is 18. Convert \frac{1}{2} and \frac{4}{9} to fractions with denominator 18.
\frac{4}{3}+\frac{7}{5}\times \frac{9+8}{18}-\frac{1}{5}
Since \frac{9}{18} and \frac{8}{18} have the same denominator, add them by adding their numerators.
\frac{4}{3}+\frac{7}{5}\times \frac{17}{18}-\frac{1}{5}
Add 9 and 8 to get 17.
\frac{4}{3}+\frac{7\times 17}{5\times 18}-\frac{1}{5}
Multiply \frac{7}{5} times \frac{17}{18} by multiplying numerator times numerator and denominator times denominator.
\frac{4}{3}+\frac{119}{90}-\frac{1}{5}
Do the multiplications in the fraction \frac{7\times 17}{5\times 18}.
\frac{120}{90}+\frac{119}{90}-\frac{1}{5}
Least common multiple of 3 and 90 is 90. Convert \frac{4}{3} and \frac{119}{90} to fractions with denominator 90.
\frac{120+119}{90}-\frac{1}{5}
Since \frac{120}{90} and \frac{119}{90} have the same denominator, add them by adding their numerators.
\frac{239}{90}-\frac{1}{5}
Add 120 and 119 to get 239.
\frac{239}{90}-\frac{18}{90}
Least common multiple of 90 and 5 is 90. Convert \frac{239}{90} and \frac{1}{5} to fractions with denominator 90.
\frac{239-18}{90}
Since \frac{239}{90} and \frac{18}{90} have the same denominator, subtract them by subtracting their numerators.
\frac{221}{90}
Subtract 18 from 239 to get 221.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}