Solve for x
x=\frac{21}{136}\approx 0.154411765
Graph
Share
Copied to clipboard
180\left(\frac{4}{3}+\frac{4}{5}\right)-270\left(\frac{8x}{15}+\frac{4}{9}\right)=315-240\left(\frac{5}{5}-\frac{9x}{2}\right)
Multiply both sides of the equation by 180, the least common multiple of 3,5,2,15,9,4.
180\left(\frac{20}{15}+\frac{12}{15}\right)-270\left(\frac{8x}{15}+\frac{4}{9}\right)=315-240\left(\frac{5}{5}-\frac{9x}{2}\right)
Least common multiple of 3 and 5 is 15. Convert \frac{4}{3} and \frac{4}{5} to fractions with denominator 15.
180\times \frac{20+12}{15}-270\left(\frac{8x}{15}+\frac{4}{9}\right)=315-240\left(\frac{5}{5}-\frac{9x}{2}\right)
Since \frac{20}{15} and \frac{12}{15} have the same denominator, add them by adding their numerators.
180\times \frac{32}{15}-270\left(\frac{8x}{15}+\frac{4}{9}\right)=315-240\left(\frac{5}{5}-\frac{9x}{2}\right)
Add 20 and 12 to get 32.
\frac{180\times 32}{15}-270\left(\frac{8x}{15}+\frac{4}{9}\right)=315-240\left(\frac{5}{5}-\frac{9x}{2}\right)
Express 180\times \frac{32}{15} as a single fraction.
\frac{5760}{15}-270\left(\frac{8x}{15}+\frac{4}{9}\right)=315-240\left(\frac{5}{5}-\frac{9x}{2}\right)
Multiply 180 and 32 to get 5760.
384-270\left(\frac{8x}{15}+\frac{4}{9}\right)=315-240\left(\frac{5}{5}-\frac{9x}{2}\right)
Divide 5760 by 15 to get 384.
384-270\left(\frac{3\times 8x}{45}+\frac{4\times 5}{45}\right)=315-240\left(\frac{5}{5}-\frac{9x}{2}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 15 and 9 is 45. Multiply \frac{8x}{15} times \frac{3}{3}. Multiply \frac{4}{9} times \frac{5}{5}.
384-270\times \frac{3\times 8x+4\times 5}{45}=315-240\left(\frac{5}{5}-\frac{9x}{2}\right)
Since \frac{3\times 8x}{45} and \frac{4\times 5}{45} have the same denominator, add them by adding their numerators.
384-270\times \frac{24x+20}{45}=315-240\left(\frac{5}{5}-\frac{9x}{2}\right)
Do the multiplications in 3\times 8x+4\times 5.
384-6\left(24x+20\right)=315-240\left(\frac{5}{5}-\frac{9x}{2}\right)
Cancel out 45, the greatest common factor in 270 and 45.
384-144x-120=315-240\left(\frac{5}{5}-\frac{9x}{2}\right)
Use the distributive property to multiply -6 by 24x+20.
264-144x=315-240\left(\frac{5}{5}-\frac{9x}{2}\right)
Subtract 120 from 384 to get 264.
264-144x=315-240\left(1-\frac{9x}{2}\right)
Divide 5 by 5 to get 1.
264-144x+240\left(1-\frac{9x}{2}\right)=315
Add 240\left(1-\frac{9x}{2}\right) to both sides.
264-144x+240+240\left(-\frac{9x}{2}\right)=315
Use the distributive property to multiply 240 by 1-\frac{9x}{2}.
264-144x+240-120\times 9x=315
Cancel out 2, the greatest common factor in 240 and 2.
264-144x+240-1080x=315
Multiply -120 and 9 to get -1080.
504-144x-1080x=315
Add 264 and 240 to get 504.
504-1224x=315
Combine -144x and -1080x to get -1224x.
-1224x=315-504
Subtract 504 from both sides.
-1224x=-189
Subtract 504 from 315 to get -189.
x=\frac{-189}{-1224}
Divide both sides by -1224.
x=\frac{21}{136}
Reduce the fraction \frac{-189}{-1224} to lowest terms by extracting and canceling out -9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}