Evaluate
-\frac{16}{125}=-0.128
Factor
-\frac{16}{125} = -0.128
Share
Copied to clipboard
\frac{4}{25}+\frac{4}{11}\left(1-7\times \frac{32}{125}\right)
Reduce the fraction \frac{16}{44} to lowest terms by extracting and canceling out 4.
\frac{4}{25}+\frac{4}{11}\left(1-\frac{7\times 32}{125}\right)
Express 7\times \frac{32}{125} as a single fraction.
\frac{4}{25}+\frac{4}{11}\left(1-\frac{224}{125}\right)
Multiply 7 and 32 to get 224.
\frac{4}{25}+\frac{4}{11}\left(\frac{125}{125}-\frac{224}{125}\right)
Convert 1 to fraction \frac{125}{125}.
\frac{4}{25}+\frac{4}{11}\times \frac{125-224}{125}
Since \frac{125}{125} and \frac{224}{125} have the same denominator, subtract them by subtracting their numerators.
\frac{4}{25}+\frac{4}{11}\left(-\frac{99}{125}\right)
Subtract 224 from 125 to get -99.
\frac{4}{25}+\frac{4\left(-99\right)}{11\times 125}
Multiply \frac{4}{11} times -\frac{99}{125} by multiplying numerator times numerator and denominator times denominator.
\frac{4}{25}+\frac{-396}{1375}
Do the multiplications in the fraction \frac{4\left(-99\right)}{11\times 125}.
\frac{4}{25}-\frac{36}{125}
Reduce the fraction \frac{-396}{1375} to lowest terms by extracting and canceling out 11.
\frac{20}{125}-\frac{36}{125}
Least common multiple of 25 and 125 is 125. Convert \frac{4}{25} and \frac{36}{125} to fractions with denominator 125.
\frac{20-36}{125}
Since \frac{20}{125} and \frac{36}{125} have the same denominator, subtract them by subtracting their numerators.
-\frac{16}{125}
Subtract 36 from 20 to get -16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}