Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{4}{21}}{\frac{5\times 11}{99\times 35}}-\frac{3}{4}+\frac{1\times 3+1}{3}
Multiply \frac{5}{99} times \frac{11}{35} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{4}{21}}{\frac{55}{3465}}-\frac{3}{4}+\frac{1\times 3+1}{3}
Do the multiplications in the fraction \frac{5\times 11}{99\times 35}.
\frac{\frac{4}{21}}{\frac{1}{63}}-\frac{3}{4}+\frac{1\times 3+1}{3}
Reduce the fraction \frac{55}{3465} to lowest terms by extracting and canceling out 55.
\frac{4}{21}\times 63-\frac{3}{4}+\frac{1\times 3+1}{3}
Divide \frac{4}{21} by \frac{1}{63} by multiplying \frac{4}{21} by the reciprocal of \frac{1}{63}.
\frac{4\times 63}{21}-\frac{3}{4}+\frac{1\times 3+1}{3}
Express \frac{4}{21}\times 63 as a single fraction.
\frac{252}{21}-\frac{3}{4}+\frac{1\times 3+1}{3}
Multiply 4 and 63 to get 252.
12-\frac{3}{4}+\frac{1\times 3+1}{3}
Divide 252 by 21 to get 12.
\frac{48}{4}-\frac{3}{4}+\frac{1\times 3+1}{3}
Convert 12 to fraction \frac{48}{4}.
\frac{48-3}{4}+\frac{1\times 3+1}{3}
Since \frac{48}{4} and \frac{3}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{45}{4}+\frac{1\times 3+1}{3}
Subtract 3 from 48 to get 45.
\frac{45}{4}+\frac{3+1}{3}
Multiply 1 and 3 to get 3.
\frac{45}{4}+\frac{4}{3}
Add 3 and 1 to get 4.
\frac{135}{12}+\frac{16}{12}
Least common multiple of 4 and 3 is 12. Convert \frac{45}{4} and \frac{4}{3} to fractions with denominator 12.
\frac{135+16}{12}
Since \frac{135}{12} and \frac{16}{12} have the same denominator, add them by adding their numerators.
\frac{151}{12}
Add 135 and 16 to get 151.