Solve for x
x = \frac{5}{4} = 1\frac{1}{4} = 1.25
Graph
Share
Copied to clipboard
\left(3x^{2}+1\right)\times 4=\left(2x+1\right)\left(6x-1\right)
Variable x cannot be equal to -\frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by \left(2x+1\right)\left(3x^{2}+1\right), the least common multiple of 2x+1,3x^{2}+1.
12x^{2}+4=\left(2x+1\right)\left(6x-1\right)
Use the distributive property to multiply 3x^{2}+1 by 4.
12x^{2}+4=12x^{2}+4x-1
Use the distributive property to multiply 2x+1 by 6x-1 and combine like terms.
12x^{2}+4-12x^{2}=4x-1
Subtract 12x^{2} from both sides.
4=4x-1
Combine 12x^{2} and -12x^{2} to get 0.
4x-1=4
Swap sides so that all variable terms are on the left hand side.
4x=4+1
Add 1 to both sides.
4x=5
Add 4 and 1 to get 5.
x=\frac{5}{4}
Divide both sides by 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}