Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(3x+2\right)\left(5x+4\right)\times 4+\left(2x+1\right)\left(5x+4\right)\times 9=\left(2x+1\right)\left(3x+2\right)\times 25
Variable x cannot be equal to any of the values -\frac{4}{5},-\frac{2}{3},-\frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by \left(2x+1\right)\left(3x+2\right)\left(5x+4\right), the least common multiple of 2x+1,3x+2,5x+4.
\left(15x^{2}+22x+8\right)\times 4+\left(2x+1\right)\left(5x+4\right)\times 9=\left(2x+1\right)\left(3x+2\right)\times 25
Use the distributive property to multiply 3x+2 by 5x+4 and combine like terms.
60x^{2}+88x+32+\left(2x+1\right)\left(5x+4\right)\times 9=\left(2x+1\right)\left(3x+2\right)\times 25
Use the distributive property to multiply 15x^{2}+22x+8 by 4.
60x^{2}+88x+32+\left(10x^{2}+13x+4\right)\times 9=\left(2x+1\right)\left(3x+2\right)\times 25
Use the distributive property to multiply 2x+1 by 5x+4 and combine like terms.
60x^{2}+88x+32+90x^{2}+117x+36=\left(2x+1\right)\left(3x+2\right)\times 25
Use the distributive property to multiply 10x^{2}+13x+4 by 9.
150x^{2}+88x+32+117x+36=\left(2x+1\right)\left(3x+2\right)\times 25
Combine 60x^{2} and 90x^{2} to get 150x^{2}.
150x^{2}+205x+32+36=\left(2x+1\right)\left(3x+2\right)\times 25
Combine 88x and 117x to get 205x.
150x^{2}+205x+68=\left(2x+1\right)\left(3x+2\right)\times 25
Add 32 and 36 to get 68.
150x^{2}+205x+68=\left(6x^{2}+7x+2\right)\times 25
Use the distributive property to multiply 2x+1 by 3x+2 and combine like terms.
150x^{2}+205x+68=150x^{2}+175x+50
Use the distributive property to multiply 6x^{2}+7x+2 by 25.
150x^{2}+205x+68-150x^{2}=175x+50
Subtract 150x^{2} from both sides.
205x+68=175x+50
Combine 150x^{2} and -150x^{2} to get 0.
205x+68-175x=50
Subtract 175x from both sides.
30x+68=50
Combine 205x and -175x to get 30x.
30x=50-68
Subtract 68 from both sides.
30x=-18
Subtract 68 from 50 to get -18.
x=\frac{-18}{30}
Divide both sides by 30.
x=-\frac{3}{5}
Reduce the fraction \frac{-18}{30} to lowest terms by extracting and canceling out 6.