Evaluate
\frac{5}{2}+\frac{8}{3a}
Expand
\frac{5}{2}+\frac{8}{3a}
Share
Copied to clipboard
\frac{4\times 3}{6a}+\frac{2\left(5a+2\right)}{6a}+\frac{5}{6}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2a and 3a is 6a. Multiply \frac{4}{2a} times \frac{3}{3}. Multiply \frac{5a+2}{3a} times \frac{2}{2}.
\frac{4\times 3+2\left(5a+2\right)}{6a}+\frac{5}{6}
Since \frac{4\times 3}{6a} and \frac{2\left(5a+2\right)}{6a} have the same denominator, add them by adding their numerators.
\frac{12+10a+4}{6a}+\frac{5}{6}
Do the multiplications in 4\times 3+2\left(5a+2\right).
\frac{16+10a}{6a}+\frac{5}{6}
Combine like terms in 12+10a+4.
\frac{2\left(5a+8\right)}{6a}+\frac{5}{6}
Factor the expressions that are not already factored in \frac{16+10a}{6a}.
\frac{5a+8}{3a}+\frac{5}{6}
Cancel out 2 in both numerator and denominator.
\frac{2\left(5a+8\right)}{6a}+\frac{5a}{6a}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3a and 6 is 6a. Multiply \frac{5a+8}{3a} times \frac{2}{2}. Multiply \frac{5}{6} times \frac{a}{a}.
\frac{2\left(5a+8\right)+5a}{6a}
Since \frac{2\left(5a+8\right)}{6a} and \frac{5a}{6a} have the same denominator, add them by adding their numerators.
\frac{10a+16+5a}{6a}
Do the multiplications in 2\left(5a+8\right)+5a.
\frac{15a+16}{6a}
Combine like terms in 10a+16+5a.
\frac{4\times 3}{6a}+\frac{2\left(5a+2\right)}{6a}+\frac{5}{6}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2a and 3a is 6a. Multiply \frac{4}{2a} times \frac{3}{3}. Multiply \frac{5a+2}{3a} times \frac{2}{2}.
\frac{4\times 3+2\left(5a+2\right)}{6a}+\frac{5}{6}
Since \frac{4\times 3}{6a} and \frac{2\left(5a+2\right)}{6a} have the same denominator, add them by adding their numerators.
\frac{12+10a+4}{6a}+\frac{5}{6}
Do the multiplications in 4\times 3+2\left(5a+2\right).
\frac{16+10a}{6a}+\frac{5}{6}
Combine like terms in 12+10a+4.
\frac{2\left(5a+8\right)}{6a}+\frac{5}{6}
Factor the expressions that are not already factored in \frac{16+10a}{6a}.
\frac{5a+8}{3a}+\frac{5}{6}
Cancel out 2 in both numerator and denominator.
\frac{2\left(5a+8\right)}{6a}+\frac{5a}{6a}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3a and 6 is 6a. Multiply \frac{5a+8}{3a} times \frac{2}{2}. Multiply \frac{5}{6} times \frac{a}{a}.
\frac{2\left(5a+8\right)+5a}{6a}
Since \frac{2\left(5a+8\right)}{6a} and \frac{5a}{6a} have the same denominator, add them by adding their numerators.
\frac{10a+16+5a}{6a}
Do the multiplications in 2\left(5a+8\right)+5a.
\frac{15a+16}{6a}
Combine like terms in 10a+16+5a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}