Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{4a}{2a\left(a-4b\right)}+\frac{2\times 8b^{2}}{2a\left(a-4b\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(a-4b\right) and a\left(a-4b\right) is 2a\left(a-4b\right). Multiply \frac{4}{2\left(a-4b\right)} times \frac{a}{a}. Multiply \frac{8b^{2}}{a\left(a-4b\right)} times \frac{2}{2}.
\frac{4a+2\times 8b^{2}}{2a\left(a-4b\right)}
Since \frac{4a}{2a\left(a-4b\right)} and \frac{2\times 8b^{2}}{2a\left(a-4b\right)} have the same denominator, add them by adding their numerators.
\frac{4a+16b^{2}}{2a\left(a-4b\right)}
Do the multiplications in 4a+2\times 8b^{2}.
\frac{4\left(a+4b^{2}\right)}{2a\left(a-4b\right)}
Factor the expressions that are not already factored in \frac{4a+16b^{2}}{2a\left(a-4b\right)}.
\frac{2\left(a+4b^{2}\right)}{a\left(a-4b\right)}
Cancel out 2 in both numerator and denominator.
\frac{2\left(a+4b^{2}\right)}{a^{2}-4ab}
Expand a\left(a-4b\right).
\frac{2a+8b^{2}}{a^{2}-4ab}
Use the distributive property to multiply 2 by a+4b^{2}.
\frac{4a}{2a\left(a-4b\right)}+\frac{2\times 8b^{2}}{2a\left(a-4b\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(a-4b\right) and a\left(a-4b\right) is 2a\left(a-4b\right). Multiply \frac{4}{2\left(a-4b\right)} times \frac{a}{a}. Multiply \frac{8b^{2}}{a\left(a-4b\right)} times \frac{2}{2}.
\frac{4a+2\times 8b^{2}}{2a\left(a-4b\right)}
Since \frac{4a}{2a\left(a-4b\right)} and \frac{2\times 8b^{2}}{2a\left(a-4b\right)} have the same denominator, add them by adding their numerators.
\frac{4a+16b^{2}}{2a\left(a-4b\right)}
Do the multiplications in 4a+2\times 8b^{2}.
\frac{4\left(a+4b^{2}\right)}{2a\left(a-4b\right)}
Factor the expressions that are not already factored in \frac{4a+16b^{2}}{2a\left(a-4b\right)}.
\frac{2\left(a+4b^{2}\right)}{a\left(a-4b\right)}
Cancel out 2 in both numerator and denominator.
\frac{2\left(a+4b^{2}\right)}{a^{2}-4ab}
Expand a\left(a-4b\right).
\frac{2a+8b^{2}}{a^{2}-4ab}
Use the distributive property to multiply 2 by a+4b^{2}.