Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{4\left(2\sqrt{3}+3\right)}{\left(2\sqrt{3}-3\right)\left(2\sqrt{3}+3\right)}
Rationalize the denominator of \frac{4}{2\sqrt{3}-3} by multiplying numerator and denominator by 2\sqrt{3}+3.
\frac{4\left(2\sqrt{3}+3\right)}{\left(2\sqrt{3}\right)^{2}-3^{2}}
Consider \left(2\sqrt{3}-3\right)\left(2\sqrt{3}+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\left(2\sqrt{3}+3\right)}{2^{2}\left(\sqrt{3}\right)^{2}-3^{2}}
Expand \left(2\sqrt{3}\right)^{2}.
\frac{4\left(2\sqrt{3}+3\right)}{4\left(\sqrt{3}\right)^{2}-3^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{4\left(2\sqrt{3}+3\right)}{4\times 3-3^{2}}
The square of \sqrt{3} is 3.
\frac{4\left(2\sqrt{3}+3\right)}{12-3^{2}}
Multiply 4 and 3 to get 12.
\frac{4\left(2\sqrt{3}+3\right)}{12-9}
Calculate 3 to the power of 2 and get 9.
\frac{4\left(2\sqrt{3}+3\right)}{3}
Subtract 9 from 12 to get 3.
\frac{8\sqrt{3}+12}{3}
Use the distributive property to multiply 4 by 2\sqrt{3}+3.