Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{4}{2+\sqrt{5}}\times 1
Divide 2-\sqrt{5} by 2-\sqrt{5} to get 1.
\frac{4\left(2-\sqrt{5}\right)}{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}\times 1
Rationalize the denominator of \frac{4}{2+\sqrt{5}} by multiplying numerator and denominator by 2-\sqrt{5}.
\frac{4\left(2-\sqrt{5}\right)}{2^{2}-\left(\sqrt{5}\right)^{2}}\times 1
Consider \left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\left(2-\sqrt{5}\right)}{4-5}\times 1
Square 2. Square \sqrt{5}.
\frac{4\left(2-\sqrt{5}\right)}{-1}\times 1
Subtract 5 from 4 to get -1.
-4\left(2-\sqrt{5}\right)
Anything divided by -1 gives its opposite.
\left(-8+4\sqrt{5}\right)\times 1
Use the distributive property to multiply -4 by 2-\sqrt{5}.
-8+4\sqrt{5}
Use the distributive property to multiply -8+4\sqrt{5} by 1.