Solve for x_2
x_{2}=-\frac{x_{1}^{2}}{8}+x_{1}+\frac{9}{8}
x_{1}\neq 9
Solve for x_1
\left\{\begin{matrix}x_{1}=\sqrt{25-8x_{2}}+4\text{, }&x_{2}\neq 0\text{ and }x_{2}\leq \frac{25}{8}\\x_{1}=-\sqrt{25-8x_{2}}+4\text{, }&x_{2}\leq \frac{25}{8}\end{matrix}\right.
Share
Copied to clipboard
4\left(\left(1+x_{1}\right)\left(9-x_{1}\right)-8x_{2}\right)=0
Multiply both sides of the equation by 2\left(-x_{1}+9\right).
4\left(9+8x_{1}-x_{1}^{2}-8x_{2}\right)=0
Use the distributive property to multiply 1+x_{1} by 9-x_{1} and combine like terms.
36+32x_{1}-4x_{1}^{2}-32x_{2}=0
Use the distributive property to multiply 4 by 9+8x_{1}-x_{1}^{2}-8x_{2}.
32x_{1}-4x_{1}^{2}-32x_{2}=-36
Subtract 36 from both sides. Anything subtracted from zero gives its negation.
-4x_{1}^{2}-32x_{2}=-36-32x_{1}
Subtract 32x_{1} from both sides.
-32x_{2}=-36-32x_{1}+4x_{1}^{2}
Add 4x_{1}^{2} to both sides.
-32x_{2}=4x_{1}^{2}-32x_{1}-36
The equation is in standard form.
\frac{-32x_{2}}{-32}=\frac{4\left(x_{1}-9\right)\left(x_{1}+1\right)}{-32}
Divide both sides by -32.
x_{2}=\frac{4\left(x_{1}-9\right)\left(x_{1}+1\right)}{-32}
Dividing by -32 undoes the multiplication by -32.
x_{2}=-\frac{\left(x_{1}-9\right)\left(x_{1}+1\right)}{8}
Divide 4\left(-9+x_{1}\right)\left(1+x_{1}\right) by -32.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}