Evaluate
\frac{127}{90}\approx 1.411111111
Factor
\frac{127}{2 \cdot 3 ^ {2} \cdot 5} = 1\frac{37}{90} = 1.4111111111111112
Share
Copied to clipboard
\frac{4}{15}\left(\frac{6+2}{3}-\frac{3}{4}\right)+\frac{\frac{1\times 2+1}{2}}{\frac{15}{9}}
Multiply 2 and 3 to get 6.
\frac{4}{15}\left(\frac{8}{3}-\frac{3}{4}\right)+\frac{\frac{1\times 2+1}{2}}{\frac{15}{9}}
Add 6 and 2 to get 8.
\frac{4}{15}\left(\frac{32}{12}-\frac{9}{12}\right)+\frac{\frac{1\times 2+1}{2}}{\frac{15}{9}}
Least common multiple of 3 and 4 is 12. Convert \frac{8}{3} and \frac{3}{4} to fractions with denominator 12.
\frac{4}{15}\times \frac{32-9}{12}+\frac{\frac{1\times 2+1}{2}}{\frac{15}{9}}
Since \frac{32}{12} and \frac{9}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{4}{15}\times \frac{23}{12}+\frac{\frac{1\times 2+1}{2}}{\frac{15}{9}}
Subtract 9 from 32 to get 23.
\frac{4\times 23}{15\times 12}+\frac{\frac{1\times 2+1}{2}}{\frac{15}{9}}
Multiply \frac{4}{15} times \frac{23}{12} by multiplying numerator times numerator and denominator times denominator.
\frac{92}{180}+\frac{\frac{1\times 2+1}{2}}{\frac{15}{9}}
Do the multiplications in the fraction \frac{4\times 23}{15\times 12}.
\frac{23}{45}+\frac{\frac{1\times 2+1}{2}}{\frac{15}{9}}
Reduce the fraction \frac{92}{180} to lowest terms by extracting and canceling out 4.
\frac{23}{45}+\frac{\left(1\times 2+1\right)\times 9}{2\times 15}
Divide \frac{1\times 2+1}{2} by \frac{15}{9} by multiplying \frac{1\times 2+1}{2} by the reciprocal of \frac{15}{9}.
\frac{23}{45}+\frac{3\left(1+2\right)}{2\times 5}
Cancel out 3 in both numerator and denominator.
\frac{23}{45}+\frac{3\times 3}{2\times 5}
Add 1 and 2 to get 3.
\frac{23}{45}+\frac{9}{2\times 5}
Multiply 3 and 3 to get 9.
\frac{23}{45}+\frac{9}{10}
Multiply 2 and 5 to get 10.
\frac{46}{90}+\frac{81}{90}
Least common multiple of 45 and 10 is 90. Convert \frac{23}{45} and \frac{9}{10} to fractions with denominator 90.
\frac{46+81}{90}
Since \frac{46}{90} and \frac{81}{90} have the same denominator, add them by adding their numerators.
\frac{127}{90}
Add 46 and 81 to get 127.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}