\frac { 4 } { 11 } - 1 : \frac { 3 } { 2 } + \frac { 4 } { 9 } ( - 2 ) + \frac { 4 } { 3 } : ( - 1 ) - [ \frac { 5 } { 18 } - \frac { 2 } { 3 } ) \frac { 3 } { 2 } =
Evaluate
-\frac{769}{396}\approx -1.941919192
Factor
-\frac{769}{396} = -1\frac{373}{396} = -1.9419191919191918
Share
Copied to clipboard
\frac{4}{11}-1\times \frac{2}{3}+\frac{4}{9}\left(-2\right)+\frac{\frac{4}{3}}{-1}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Divide 1 by \frac{3}{2} by multiplying 1 by the reciprocal of \frac{3}{2}.
\frac{4}{11}-\frac{2}{3}+\frac{4}{9}\left(-2\right)+\frac{\frac{4}{3}}{-1}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Multiply 1 and \frac{2}{3} to get \frac{2}{3}.
\frac{12}{33}-\frac{22}{33}+\frac{4}{9}\left(-2\right)+\frac{\frac{4}{3}}{-1}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Least common multiple of 11 and 3 is 33. Convert \frac{4}{11} and \frac{2}{3} to fractions with denominator 33.
\frac{12-22}{33}+\frac{4}{9}\left(-2\right)+\frac{\frac{4}{3}}{-1}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Since \frac{12}{33} and \frac{22}{33} have the same denominator, subtract them by subtracting their numerators.
-\frac{10}{33}+\frac{4}{9}\left(-2\right)+\frac{\frac{4}{3}}{-1}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Subtract 22 from 12 to get -10.
-\frac{10}{33}+\frac{4\left(-2\right)}{9}+\frac{\frac{4}{3}}{-1}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Express \frac{4}{9}\left(-2\right) as a single fraction.
-\frac{10}{33}+\frac{-8}{9}+\frac{\frac{4}{3}}{-1}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Multiply 4 and -2 to get -8.
-\frac{10}{33}-\frac{8}{9}+\frac{\frac{4}{3}}{-1}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Fraction \frac{-8}{9} can be rewritten as -\frac{8}{9} by extracting the negative sign.
-\frac{30}{99}-\frac{88}{99}+\frac{\frac{4}{3}}{-1}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Least common multiple of 33 and 9 is 99. Convert -\frac{10}{33} and \frac{8}{9} to fractions with denominator 99.
\frac{-30-88}{99}+\frac{\frac{4}{3}}{-1}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Since -\frac{30}{99} and \frac{88}{99} have the same denominator, subtract them by subtracting their numerators.
-\frac{118}{99}+\frac{\frac{4}{3}}{-1}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Subtract 88 from -30 to get -118.
-\frac{118}{99}+\frac{4}{3\left(-1\right)}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Express \frac{\frac{4}{3}}{-1} as a single fraction.
-\frac{118}{99}+\frac{4}{-3}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Multiply 3 and -1 to get -3.
-\frac{118}{99}-\frac{4}{3}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Fraction \frac{4}{-3} can be rewritten as -\frac{4}{3} by extracting the negative sign.
-\frac{118}{99}-\frac{132}{99}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Least common multiple of 99 and 3 is 99. Convert -\frac{118}{99} and \frac{4}{3} to fractions with denominator 99.
\frac{-118-132}{99}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Since -\frac{118}{99} and \frac{132}{99} have the same denominator, subtract them by subtracting their numerators.
-\frac{250}{99}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Subtract 132 from -118 to get -250.
-\frac{250}{99}-\left(\frac{5}{18}-\frac{12}{18}\right)\times \frac{3}{2}
Least common multiple of 18 and 3 is 18. Convert \frac{5}{18} and \frac{2}{3} to fractions with denominator 18.
-\frac{250}{99}-\frac{5-12}{18}\times \frac{3}{2}
Since \frac{5}{18} and \frac{12}{18} have the same denominator, subtract them by subtracting their numerators.
-\frac{250}{99}-\left(-\frac{7}{18}\times \frac{3}{2}\right)
Subtract 12 from 5 to get -7.
-\frac{250}{99}-\frac{-7\times 3}{18\times 2}
Multiply -\frac{7}{18} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
-\frac{250}{99}-\frac{-21}{36}
Do the multiplications in the fraction \frac{-7\times 3}{18\times 2}.
-\frac{250}{99}-\left(-\frac{7}{12}\right)
Reduce the fraction \frac{-21}{36} to lowest terms by extracting and canceling out 3.
-\frac{250}{99}+\frac{7}{12}
The opposite of -\frac{7}{12} is \frac{7}{12}.
-\frac{1000}{396}+\frac{231}{396}
Least common multiple of 99 and 12 is 396. Convert -\frac{250}{99} and \frac{7}{12} to fractions with denominator 396.
\frac{-1000+231}{396}
Since -\frac{1000}{396} and \frac{231}{396} have the same denominator, add them by adding their numerators.
-\frac{769}{396}
Add -1000 and 231 to get -769.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}