Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{4}{11}-1\times \frac{2}{3}+\frac{4}{9}\left(-2\right)+\frac{\frac{4}{3}}{-1}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Divide 1 by \frac{3}{2} by multiplying 1 by the reciprocal of \frac{3}{2}.
\frac{4}{11}-\frac{2}{3}+\frac{4}{9}\left(-2\right)+\frac{\frac{4}{3}}{-1}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Multiply 1 and \frac{2}{3} to get \frac{2}{3}.
\frac{12}{33}-\frac{22}{33}+\frac{4}{9}\left(-2\right)+\frac{\frac{4}{3}}{-1}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Least common multiple of 11 and 3 is 33. Convert \frac{4}{11} and \frac{2}{3} to fractions with denominator 33.
\frac{12-22}{33}+\frac{4}{9}\left(-2\right)+\frac{\frac{4}{3}}{-1}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Since \frac{12}{33} and \frac{22}{33} have the same denominator, subtract them by subtracting their numerators.
-\frac{10}{33}+\frac{4}{9}\left(-2\right)+\frac{\frac{4}{3}}{-1}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Subtract 22 from 12 to get -10.
-\frac{10}{33}+\frac{4\left(-2\right)}{9}+\frac{\frac{4}{3}}{-1}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Express \frac{4}{9}\left(-2\right) as a single fraction.
-\frac{10}{33}+\frac{-8}{9}+\frac{\frac{4}{3}}{-1}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Multiply 4 and -2 to get -8.
-\frac{10}{33}-\frac{8}{9}+\frac{\frac{4}{3}}{-1}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Fraction \frac{-8}{9} can be rewritten as -\frac{8}{9} by extracting the negative sign.
-\frac{30}{99}-\frac{88}{99}+\frac{\frac{4}{3}}{-1}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Least common multiple of 33 and 9 is 99. Convert -\frac{10}{33} and \frac{8}{9} to fractions with denominator 99.
\frac{-30-88}{99}+\frac{\frac{4}{3}}{-1}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Since -\frac{30}{99} and \frac{88}{99} have the same denominator, subtract them by subtracting their numerators.
-\frac{118}{99}+\frac{\frac{4}{3}}{-1}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Subtract 88 from -30 to get -118.
-\frac{118}{99}+\frac{4}{3\left(-1\right)}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Express \frac{\frac{4}{3}}{-1} as a single fraction.
-\frac{118}{99}+\frac{4}{-3}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Multiply 3 and -1 to get -3.
-\frac{118}{99}-\frac{4}{3}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Fraction \frac{4}{-3} can be rewritten as -\frac{4}{3} by extracting the negative sign.
-\frac{118}{99}-\frac{132}{99}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Least common multiple of 99 and 3 is 99. Convert -\frac{118}{99} and \frac{4}{3} to fractions with denominator 99.
\frac{-118-132}{99}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Since -\frac{118}{99} and \frac{132}{99} have the same denominator, subtract them by subtracting their numerators.
-\frac{250}{99}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Subtract 132 from -118 to get -250.
-\frac{250}{99}-\left(\frac{5}{18}-\frac{12}{18}\right)\times \frac{3}{2}
Least common multiple of 18 and 3 is 18. Convert \frac{5}{18} and \frac{2}{3} to fractions with denominator 18.
-\frac{250}{99}-\frac{5-12}{18}\times \frac{3}{2}
Since \frac{5}{18} and \frac{12}{18} have the same denominator, subtract them by subtracting their numerators.
-\frac{250}{99}-\left(-\frac{7}{18}\times \frac{3}{2}\right)
Subtract 12 from 5 to get -7.
-\frac{250}{99}-\frac{-7\times 3}{18\times 2}
Multiply -\frac{7}{18} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
-\frac{250}{99}-\frac{-21}{36}
Do the multiplications in the fraction \frac{-7\times 3}{18\times 2}.
-\frac{250}{99}-\left(-\frac{7}{12}\right)
Reduce the fraction \frac{-21}{36} to lowest terms by extracting and canceling out 3.
-\frac{250}{99}+\frac{7}{12}
The opposite of -\frac{7}{12} is \frac{7}{12}.
-\frac{1000}{396}+\frac{231}{396}
Least common multiple of 99 and 12 is 396. Convert -\frac{250}{99} and \frac{7}{12} to fractions with denominator 396.
\frac{-1000+231}{396}
Since -\frac{1000}{396} and \frac{231}{396} have the same denominator, add them by adding their numerators.
-\frac{769}{396}
Add -1000 and 231 to get -769.