Evaluate
\frac{53}{54}\approx 0.981481481
Factor
\frac{53}{2 \cdot 3 ^ {3}} = 0.9814814814814815
Share
Copied to clipboard
\frac{4}{2\times 3}+\frac{5}{2\times 3\times 4}+\frac{6}{3\times 4\times 5}+\frac{21}{18\times 9\times 20}
Multiply 1 and 2 to get 2.
\frac{4}{6}+\frac{5}{2\times 3\times 4}+\frac{6}{3\times 4\times 5}+\frac{21}{18\times 9\times 20}
Multiply 2 and 3 to get 6.
\frac{2}{3}+\frac{5}{2\times 3\times 4}+\frac{6}{3\times 4\times 5}+\frac{21}{18\times 9\times 20}
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
\frac{2}{3}+\frac{5}{6\times 4}+\frac{6}{3\times 4\times 5}+\frac{21}{18\times 9\times 20}
Multiply 2 and 3 to get 6.
\frac{2}{3}+\frac{5}{24}+\frac{6}{3\times 4\times 5}+\frac{21}{18\times 9\times 20}
Multiply 6 and 4 to get 24.
\frac{16}{24}+\frac{5}{24}+\frac{6}{3\times 4\times 5}+\frac{21}{18\times 9\times 20}
Least common multiple of 3 and 24 is 24. Convert \frac{2}{3} and \frac{5}{24} to fractions with denominator 24.
\frac{16+5}{24}+\frac{6}{3\times 4\times 5}+\frac{21}{18\times 9\times 20}
Since \frac{16}{24} and \frac{5}{24} have the same denominator, add them by adding their numerators.
\frac{21}{24}+\frac{6}{3\times 4\times 5}+\frac{21}{18\times 9\times 20}
Add 16 and 5 to get 21.
\frac{7}{8}+\frac{6}{3\times 4\times 5}+\frac{21}{18\times 9\times 20}
Reduce the fraction \frac{21}{24} to lowest terms by extracting and canceling out 3.
\frac{7}{8}+\frac{6}{12\times 5}+\frac{21}{18\times 9\times 20}
Multiply 3 and 4 to get 12.
\frac{7}{8}+\frac{6}{60}+\frac{21}{18\times 9\times 20}
Multiply 12 and 5 to get 60.
\frac{7}{8}+\frac{1}{10}+\frac{21}{18\times 9\times 20}
Reduce the fraction \frac{6}{60} to lowest terms by extracting and canceling out 6.
\frac{35}{40}+\frac{4}{40}+\frac{21}{18\times 9\times 20}
Least common multiple of 8 and 10 is 40. Convert \frac{7}{8} and \frac{1}{10} to fractions with denominator 40.
\frac{35+4}{40}+\frac{21}{18\times 9\times 20}
Since \frac{35}{40} and \frac{4}{40} have the same denominator, add them by adding their numerators.
\frac{39}{40}+\frac{21}{18\times 9\times 20}
Add 35 and 4 to get 39.
\frac{39}{40}+\frac{21}{162\times 20}
Multiply 18 and 9 to get 162.
\frac{39}{40}+\frac{21}{3240}
Multiply 162 and 20 to get 3240.
\frac{39}{40}+\frac{7}{1080}
Reduce the fraction \frac{21}{3240} to lowest terms by extracting and canceling out 3.
\frac{1053}{1080}+\frac{7}{1080}
Least common multiple of 40 and 1080 is 1080. Convert \frac{39}{40} and \frac{7}{1080} to fractions with denominator 1080.
\frac{1053+7}{1080}
Since \frac{1053}{1080} and \frac{7}{1080} have the same denominator, add them by adding their numerators.
\frac{1060}{1080}
Add 1053 and 7 to get 1060.
\frac{53}{54}
Reduce the fraction \frac{1060}{1080} to lowest terms by extracting and canceling out 20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}