Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{4\left(1-\sqrt{3}\right)}{\left(1+\sqrt{3}\right)\left(1-\sqrt{3}\right)}-\frac{2}{\sqrt{3}-1}+\frac{3\sqrt{3}}{3+2\sqrt{3}}
Rationalize the denominator of \frac{4}{1+\sqrt{3}} by multiplying numerator and denominator by 1-\sqrt{3}.
\frac{4\left(1-\sqrt{3}\right)}{1^{2}-\left(\sqrt{3}\right)^{2}}-\frac{2}{\sqrt{3}-1}+\frac{3\sqrt{3}}{3+2\sqrt{3}}
Consider \left(1+\sqrt{3}\right)\left(1-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\left(1-\sqrt{3}\right)}{1-3}-\frac{2}{\sqrt{3}-1}+\frac{3\sqrt{3}}{3+2\sqrt{3}}
Square 1. Square \sqrt{3}.
\frac{4\left(1-\sqrt{3}\right)}{-2}-\frac{2}{\sqrt{3}-1}+\frac{3\sqrt{3}}{3+2\sqrt{3}}
Subtract 3 from 1 to get -2.
-2\left(1-\sqrt{3}\right)-\frac{2}{\sqrt{3}-1}+\frac{3\sqrt{3}}{3+2\sqrt{3}}
Divide 4\left(1-\sqrt{3}\right) by -2 to get -2\left(1-\sqrt{3}\right).
-2\left(1-\sqrt{3}\right)-\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}+\frac{3\sqrt{3}}{3+2\sqrt{3}}
Rationalize the denominator of \frac{2}{\sqrt{3}-1} by multiplying numerator and denominator by \sqrt{3}+1.
-2\left(1-\sqrt{3}\right)-\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}+\frac{3\sqrt{3}}{3+2\sqrt{3}}
Consider \left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-2\left(1-\sqrt{3}\right)-\frac{2\left(\sqrt{3}+1\right)}{3-1}+\frac{3\sqrt{3}}{3+2\sqrt{3}}
Square \sqrt{3}. Square 1.
-2\left(1-\sqrt{3}\right)-\frac{2\left(\sqrt{3}+1\right)}{2}+\frac{3\sqrt{3}}{3+2\sqrt{3}}
Subtract 1 from 3 to get 2.
-2\left(1-\sqrt{3}\right)-\left(\sqrt{3}+1\right)+\frac{3\sqrt{3}}{3+2\sqrt{3}}
Cancel out 2 and 2.
-2\left(1-\sqrt{3}\right)-\sqrt{3}-1+\frac{3\sqrt{3}}{3+2\sqrt{3}}
To find the opposite of \sqrt{3}+1, find the opposite of each term.
-2\left(1-\sqrt{3}\right)-\sqrt{3}-1+\frac{3\sqrt{3}\left(3-2\sqrt{3}\right)}{\left(3+2\sqrt{3}\right)\left(3-2\sqrt{3}\right)}
Rationalize the denominator of \frac{3\sqrt{3}}{3+2\sqrt{3}} by multiplying numerator and denominator by 3-2\sqrt{3}.
-2\left(1-\sqrt{3}\right)-\sqrt{3}-1+\frac{3\sqrt{3}\left(3-2\sqrt{3}\right)}{3^{2}-\left(2\sqrt{3}\right)^{2}}
Consider \left(3+2\sqrt{3}\right)\left(3-2\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-2\left(1-\sqrt{3}\right)-\sqrt{3}-1+\frac{3\sqrt{3}\left(3-2\sqrt{3}\right)}{9-\left(2\sqrt{3}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
-2\left(1-\sqrt{3}\right)-\sqrt{3}-1+\frac{3\sqrt{3}\left(3-2\sqrt{3}\right)}{9-2^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(2\sqrt{3}\right)^{2}.
-2\left(1-\sqrt{3}\right)-\sqrt{3}-1+\frac{3\sqrt{3}\left(3-2\sqrt{3}\right)}{9-4\left(\sqrt{3}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
-2\left(1-\sqrt{3}\right)-\sqrt{3}-1+\frac{3\sqrt{3}\left(3-2\sqrt{3}\right)}{9-4\times 3}
The square of \sqrt{3} is 3.
-2\left(1-\sqrt{3}\right)-\sqrt{3}-1+\frac{3\sqrt{3}\left(3-2\sqrt{3}\right)}{9-12}
Multiply 4 and 3 to get 12.
-2\left(1-\sqrt{3}\right)-\sqrt{3}-1+\frac{3\sqrt{3}\left(3-2\sqrt{3}\right)}{-3}
Subtract 12 from 9 to get -3.
-2\left(1-\sqrt{3}\right)-\sqrt{3}-1-\sqrt{3}\left(3-2\sqrt{3}\right)
Cancel out -3 and -3.
-2+2\sqrt{3}-\sqrt{3}-1-\sqrt{3}\left(3-2\sqrt{3}\right)
Use the distributive property to multiply -2 by 1-\sqrt{3}.
-2+\sqrt{3}-1-\sqrt{3}\left(3-2\sqrt{3}\right)
Combine 2\sqrt{3} and -\sqrt{3} to get \sqrt{3}.
-3+\sqrt{3}-\sqrt{3}\left(3-2\sqrt{3}\right)
Subtract 1 from -2 to get -3.
-3+\sqrt{3}-3\sqrt{3}+2\left(\sqrt{3}\right)^{2}
Use the distributive property to multiply -\sqrt{3} by 3-2\sqrt{3}.
-3+\sqrt{3}-3\sqrt{3}+2\times 3
The square of \sqrt{3} is 3.
-3+\sqrt{3}-3\sqrt{3}+6
Multiply 2 and 3 to get 6.
-3-2\sqrt{3}+6
Combine \sqrt{3} and -3\sqrt{3} to get -2\sqrt{3}.
3-2\sqrt{3}
Add -3 and 6 to get 3.