Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{4\left(\sqrt{7}-\sqrt{3}\right)}{\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}+\frac{3}{\sqrt{6}-\sqrt{3}}-\frac{1}{\sqrt{7}-\sqrt{6}}
Rationalize the denominator of \frac{4}{\sqrt{7}+\sqrt{3}} by multiplying numerator and denominator by \sqrt{7}-\sqrt{3}.
\frac{4\left(\sqrt{7}-\sqrt{3}\right)}{\left(\sqrt{7}\right)^{2}-\left(\sqrt{3}\right)^{2}}+\frac{3}{\sqrt{6}-\sqrt{3}}-\frac{1}{\sqrt{7}-\sqrt{6}}
Consider \left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\left(\sqrt{7}-\sqrt{3}\right)}{7-3}+\frac{3}{\sqrt{6}-\sqrt{3}}-\frac{1}{\sqrt{7}-\sqrt{6}}
Square \sqrt{7}. Square \sqrt{3}.
\frac{4\left(\sqrt{7}-\sqrt{3}\right)}{4}+\frac{3}{\sqrt{6}-\sqrt{3}}-\frac{1}{\sqrt{7}-\sqrt{6}}
Subtract 3 from 7 to get 4.
\sqrt{7}-\sqrt{3}+\frac{3}{\sqrt{6}-\sqrt{3}}-\frac{1}{\sqrt{7}-\sqrt{6}}
Cancel out 4 and 4.
\sqrt{7}-\sqrt{3}+\frac{3\left(\sqrt{6}+\sqrt{3}\right)}{\left(\sqrt{6}-\sqrt{3}\right)\left(\sqrt{6}+\sqrt{3}\right)}-\frac{1}{\sqrt{7}-\sqrt{6}}
Rationalize the denominator of \frac{3}{\sqrt{6}-\sqrt{3}} by multiplying numerator and denominator by \sqrt{6}+\sqrt{3}.
\sqrt{7}-\sqrt{3}+\frac{3\left(\sqrt{6}+\sqrt{3}\right)}{\left(\sqrt{6}\right)^{2}-\left(\sqrt{3}\right)^{2}}-\frac{1}{\sqrt{7}-\sqrt{6}}
Consider \left(\sqrt{6}-\sqrt{3}\right)\left(\sqrt{6}+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\sqrt{7}-\sqrt{3}+\frac{3\left(\sqrt{6}+\sqrt{3}\right)}{6-3}-\frac{1}{\sqrt{7}-\sqrt{6}}
Square \sqrt{6}. Square \sqrt{3}.
\sqrt{7}-\sqrt{3}+\frac{3\left(\sqrt{6}+\sqrt{3}\right)}{3}-\frac{1}{\sqrt{7}-\sqrt{6}}
Subtract 3 from 6 to get 3.
\sqrt{7}-\sqrt{3}+\sqrt{6}+\sqrt{3}-\frac{1}{\sqrt{7}-\sqrt{6}}
Cancel out 3 and 3.
\sqrt{7}+\sqrt{6}-\frac{1}{\sqrt{7}-\sqrt{6}}
Combine -\sqrt{3} and \sqrt{3} to get 0.
\sqrt{7}+\sqrt{6}-\frac{\sqrt{7}+\sqrt{6}}{\left(\sqrt{7}-\sqrt{6}\right)\left(\sqrt{7}+\sqrt{6}\right)}
Rationalize the denominator of \frac{1}{\sqrt{7}-\sqrt{6}} by multiplying numerator and denominator by \sqrt{7}+\sqrt{6}.
\sqrt{7}+\sqrt{6}-\frac{\sqrt{7}+\sqrt{6}}{\left(\sqrt{7}\right)^{2}-\left(\sqrt{6}\right)^{2}}
Consider \left(\sqrt{7}-\sqrt{6}\right)\left(\sqrt{7}+\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\sqrt{7}+\sqrt{6}-\frac{\sqrt{7}+\sqrt{6}}{7-6}
Square \sqrt{7}. Square \sqrt{6}.
\sqrt{7}+\sqrt{6}-\frac{\sqrt{7}+\sqrt{6}}{1}
Subtract 6 from 7 to get 1.
\sqrt{7}+\sqrt{6}-\left(\sqrt{7}+\sqrt{6}\right)
Anything divided by one gives itself.
\sqrt{7}+\sqrt{6}-\sqrt{7}-\sqrt{6}
To find the opposite of \sqrt{7}+\sqrt{6}, find the opposite of each term.
\sqrt{6}-\sqrt{6}
Combine \sqrt{7} and -\sqrt{7} to get 0.
0
Combine \sqrt{6} and -\sqrt{6} to get 0.