Evaluate
0
Factor
0
Share
Copied to clipboard
\frac{4\left(\sqrt{7}-\sqrt{3}\right)}{\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}+\frac{3}{\sqrt{6}-\sqrt{3}}-\frac{1}{\sqrt{7}-\sqrt{6}}
Rationalize the denominator of \frac{4}{\sqrt{7}+\sqrt{3}} by multiplying numerator and denominator by \sqrt{7}-\sqrt{3}.
\frac{4\left(\sqrt{7}-\sqrt{3}\right)}{\left(\sqrt{7}\right)^{2}-\left(\sqrt{3}\right)^{2}}+\frac{3}{\sqrt{6}-\sqrt{3}}-\frac{1}{\sqrt{7}-\sqrt{6}}
Consider \left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\left(\sqrt{7}-\sqrt{3}\right)}{7-3}+\frac{3}{\sqrt{6}-\sqrt{3}}-\frac{1}{\sqrt{7}-\sqrt{6}}
Square \sqrt{7}. Square \sqrt{3}.
\frac{4\left(\sqrt{7}-\sqrt{3}\right)}{4}+\frac{3}{\sqrt{6}-\sqrt{3}}-\frac{1}{\sqrt{7}-\sqrt{6}}
Subtract 3 from 7 to get 4.
\sqrt{7}-\sqrt{3}+\frac{3}{\sqrt{6}-\sqrt{3}}-\frac{1}{\sqrt{7}-\sqrt{6}}
Cancel out 4 and 4.
\sqrt{7}-\sqrt{3}+\frac{3\left(\sqrt{6}+\sqrt{3}\right)}{\left(\sqrt{6}-\sqrt{3}\right)\left(\sqrt{6}+\sqrt{3}\right)}-\frac{1}{\sqrt{7}-\sqrt{6}}
Rationalize the denominator of \frac{3}{\sqrt{6}-\sqrt{3}} by multiplying numerator and denominator by \sqrt{6}+\sqrt{3}.
\sqrt{7}-\sqrt{3}+\frac{3\left(\sqrt{6}+\sqrt{3}\right)}{\left(\sqrt{6}\right)^{2}-\left(\sqrt{3}\right)^{2}}-\frac{1}{\sqrt{7}-\sqrt{6}}
Consider \left(\sqrt{6}-\sqrt{3}\right)\left(\sqrt{6}+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\sqrt{7}-\sqrt{3}+\frac{3\left(\sqrt{6}+\sqrt{3}\right)}{6-3}-\frac{1}{\sqrt{7}-\sqrt{6}}
Square \sqrt{6}. Square \sqrt{3}.
\sqrt{7}-\sqrt{3}+\frac{3\left(\sqrt{6}+\sqrt{3}\right)}{3}-\frac{1}{\sqrt{7}-\sqrt{6}}
Subtract 3 from 6 to get 3.
\sqrt{7}-\sqrt{3}+\sqrt{6}+\sqrt{3}-\frac{1}{\sqrt{7}-\sqrt{6}}
Cancel out 3 and 3.
\sqrt{7}+\sqrt{6}-\frac{1}{\sqrt{7}-\sqrt{6}}
Combine -\sqrt{3} and \sqrt{3} to get 0.
\sqrt{7}+\sqrt{6}-\frac{\sqrt{7}+\sqrt{6}}{\left(\sqrt{7}-\sqrt{6}\right)\left(\sqrt{7}+\sqrt{6}\right)}
Rationalize the denominator of \frac{1}{\sqrt{7}-\sqrt{6}} by multiplying numerator and denominator by \sqrt{7}+\sqrt{6}.
\sqrt{7}+\sqrt{6}-\frac{\sqrt{7}+\sqrt{6}}{\left(\sqrt{7}\right)^{2}-\left(\sqrt{6}\right)^{2}}
Consider \left(\sqrt{7}-\sqrt{6}\right)\left(\sqrt{7}+\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\sqrt{7}+\sqrt{6}-\frac{\sqrt{7}+\sqrt{6}}{7-6}
Square \sqrt{7}. Square \sqrt{6}.
\sqrt{7}+\sqrt{6}-\frac{\sqrt{7}+\sqrt{6}}{1}
Subtract 6 from 7 to get 1.
\sqrt{7}+\sqrt{6}-\left(\sqrt{7}+\sqrt{6}\right)
Anything divided by one gives itself.
\sqrt{7}+\sqrt{6}-\sqrt{7}-\sqrt{6}
To find the opposite of \sqrt{7}+\sqrt{6}, find the opposite of each term.
\sqrt{6}-\sqrt{6}
Combine \sqrt{7} and -\sqrt{7} to get 0.
0
Combine \sqrt{6} and -\sqrt{6} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}