Verify
true
Share
Copied to clipboard
\frac{4}{\sqrt{3}}=\frac{4}{\sqrt{3}}\times 1\text{ and }\frac{4}{\sqrt{3}}\times \frac{\sqrt{3}}{\sqrt{3}}=\frac{4\sqrt{3}}{3}
Divide \sqrt{3} by \sqrt{3} to get 1.
\frac{4}{\sqrt{3}}=\frac{4}{\sqrt{3}}\times 1\text{ and }\frac{4}{\sqrt{3}}\times 1=\frac{4\sqrt{3}}{3}
Divide \sqrt{3} by \sqrt{3} to get 1.
\frac{4\sqrt{3}}{\left(\sqrt{3}\right)^{2}}=\frac{4}{\sqrt{3}}\times 1\text{ and }\frac{4}{\sqrt{3}}\times 1=\frac{4\sqrt{3}}{3}
Rationalize the denominator of \frac{4}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{4\sqrt{3}}{3}=\frac{4}{\sqrt{3}}\times 1\text{ and }\frac{4}{\sqrt{3}}\times 1=\frac{4\sqrt{3}}{3}
The square of \sqrt{3} is 3.
\frac{4\sqrt{3}}{3}=\frac{4\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\times 1\text{ and }\frac{4}{\sqrt{3}}\times 1=\frac{4\sqrt{3}}{3}
Rationalize the denominator of \frac{4}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{4\sqrt{3}}{3}=\frac{4\sqrt{3}}{3}\times 1\text{ and }\frac{4}{\sqrt{3}}\times 1=\frac{4\sqrt{3}}{3}
The square of \sqrt{3} is 3.
\frac{4\sqrt{3}}{3}=\frac{4\sqrt{3}}{3}\text{ and }\frac{4}{\sqrt{3}}\times 1=\frac{4\sqrt{3}}{3}
Express \frac{4\sqrt{3}}{3}\times 1 as a single fraction.
\frac{4\sqrt{3}}{3}=\frac{4\sqrt{3}}{3}\text{ and }\frac{4\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\times 1=\frac{4\sqrt{3}}{3}
Rationalize the denominator of \frac{4}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{4\sqrt{3}}{3}=\frac{4\sqrt{3}}{3}\text{ and }\frac{4\sqrt{3}}{3}\times 1=\frac{4\sqrt{3}}{3}
The square of \sqrt{3} is 3.
\frac{4\sqrt{3}}{3}=\frac{4\sqrt{3}}{3}\text{ and }\frac{4\sqrt{3}}{3}=\frac{4\sqrt{3}}{3}
Express \frac{4\sqrt{3}}{3}\times 1 as a single fraction.
\frac{4\sqrt{3}}{3}-\frac{4\sqrt{3}}{3}=0\text{ and }\frac{4\sqrt{3}}{3}=\frac{4\sqrt{3}}{3}
Subtract \frac{4\sqrt{3}}{3} from both sides.
0=0\text{ and }\frac{4\sqrt{3}}{3}=\frac{4\sqrt{3}}{3}
Combine \frac{4\sqrt{3}}{3} and -\frac{4\sqrt{3}}{3} to get 0.
\text{true}\text{ and }\frac{4\sqrt{3}}{3}=\frac{4\sqrt{3}}{3}
Compare 0 and 0.
\text{true}\text{ and }\frac{4\sqrt{3}}{3}-\frac{4\sqrt{3}}{3}=0
Subtract \frac{4\sqrt{3}}{3} from both sides.
\text{true}\text{ and }0=0
Combine \frac{4\sqrt{3}}{3} and -\frac{4\sqrt{3}}{3} to get 0.
\text{true}\text{ and }\text{true}
Compare 0 and 0.
\text{true}
The conjunction of \text{true} and \text{true} is \text{true}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}