Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{4\left(\sqrt{2}+7\right)}{\left(\sqrt{2}-7\right)\left(\sqrt{2}+7\right)}
Rationalize the denominator of \frac{4}{\sqrt{2}-7} by multiplying numerator and denominator by \sqrt{2}+7.
\frac{4\left(\sqrt{2}+7\right)}{\left(\sqrt{2}\right)^{2}-7^{2}}
Consider \left(\sqrt{2}-7\right)\left(\sqrt{2}+7\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\left(\sqrt{2}+7\right)}{2-49}
Square \sqrt{2}. Square 7.
\frac{4\left(\sqrt{2}+7\right)}{-47}
Subtract 49 from 2 to get -47.
\frac{4\sqrt{2}+28}{-47}
Use the distributive property to multiply 4 by \sqrt{2}+7.