Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{4\left(\sqrt{2}+6\right)}{\left(\sqrt{2}-6\right)\left(\sqrt{2}+6\right)}
Rationalize the denominator of \frac{4}{\sqrt{2}-6} by multiplying numerator and denominator by \sqrt{2}+6.
\frac{4\left(\sqrt{2}+6\right)}{\left(\sqrt{2}\right)^{2}-6^{2}}
Consider \left(\sqrt{2}-6\right)\left(\sqrt{2}+6\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\left(\sqrt{2}+6\right)}{2-36}
Square \sqrt{2}. Square 6.
\frac{4\left(\sqrt{2}+6\right)}{-34}
Subtract 36 from 2 to get -34.
-\frac{2}{17}\left(\sqrt{2}+6\right)
Divide 4\left(\sqrt{2}+6\right) by -34 to get -\frac{2}{17}\left(\sqrt{2}+6\right).
-\frac{2}{17}\sqrt{2}-\frac{2}{17}\times 6
Use the distributive property to multiply -\frac{2}{17} by \sqrt{2}+6.
-\frac{2}{17}\sqrt{2}+\frac{-2\times 6}{17}
Express -\frac{2}{17}\times 6 as a single fraction.
-\frac{2}{17}\sqrt{2}+\frac{-12}{17}
Multiply -2 and 6 to get -12.
-\frac{2}{17}\sqrt{2}-\frac{12}{17}
Fraction \frac{-12}{17} can be rewritten as -\frac{12}{17} by extracting the negative sign.