Evaluate
\frac{-2\sqrt{2}-12}{17}\approx -0.872260419
Share
Copied to clipboard
\frac{4\left(\sqrt{2}+6\right)}{\left(\sqrt{2}-6\right)\left(\sqrt{2}+6\right)}
Rationalize the denominator of \frac{4}{\sqrt{2}-6} by multiplying numerator and denominator by \sqrt{2}+6.
\frac{4\left(\sqrt{2}+6\right)}{\left(\sqrt{2}\right)^{2}-6^{2}}
Consider \left(\sqrt{2}-6\right)\left(\sqrt{2}+6\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\left(\sqrt{2}+6\right)}{2-36}
Square \sqrt{2}. Square 6.
\frac{4\left(\sqrt{2}+6\right)}{-34}
Subtract 36 from 2 to get -34.
-\frac{2}{17}\left(\sqrt{2}+6\right)
Divide 4\left(\sqrt{2}+6\right) by -34 to get -\frac{2}{17}\left(\sqrt{2}+6\right).
-\frac{2}{17}\sqrt{2}-\frac{2}{17}\times 6
Use the distributive property to multiply -\frac{2}{17} by \sqrt{2}+6.
-\frac{2}{17}\sqrt{2}+\frac{-2\times 6}{17}
Express -\frac{2}{17}\times 6 as a single fraction.
-\frac{2}{17}\sqrt{2}+\frac{-12}{17}
Multiply -2 and 6 to get -12.
-\frac{2}{17}\sqrt{2}-\frac{12}{17}
Fraction \frac{-12}{17} can be rewritten as -\frac{12}{17} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}