Evaluate
2\sqrt{3}\approx 3.464101615
Share
Copied to clipboard
\frac{4\left(\sqrt{11}-\sqrt{7}\right)}{\left(\sqrt{11}+\sqrt{7}\right)\left(\sqrt{11}-\sqrt{7}\right)}-\frac{8}{\sqrt{11}+\sqrt{3}}+\frac{4}{\sqrt{7}-\sqrt{3}}
Rationalize the denominator of \frac{4}{\sqrt{11}+\sqrt{7}} by multiplying numerator and denominator by \sqrt{11}-\sqrt{7}.
\frac{4\left(\sqrt{11}-\sqrt{7}\right)}{\left(\sqrt{11}\right)^{2}-\left(\sqrt{7}\right)^{2}}-\frac{8}{\sqrt{11}+\sqrt{3}}+\frac{4}{\sqrt{7}-\sqrt{3}}
Consider \left(\sqrt{11}+\sqrt{7}\right)\left(\sqrt{11}-\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\left(\sqrt{11}-\sqrt{7}\right)}{11-7}-\frac{8}{\sqrt{11}+\sqrt{3}}+\frac{4}{\sqrt{7}-\sqrt{3}}
Square \sqrt{11}. Square \sqrt{7}.
\frac{4\left(\sqrt{11}-\sqrt{7}\right)}{4}-\frac{8}{\sqrt{11}+\sqrt{3}}+\frac{4}{\sqrt{7}-\sqrt{3}}
Subtract 7 from 11 to get 4.
\sqrt{11}-\sqrt{7}-\frac{8}{\sqrt{11}+\sqrt{3}}+\frac{4}{\sqrt{7}-\sqrt{3}}
Cancel out 4 and 4.
\sqrt{11}-\sqrt{7}-\frac{8\left(\sqrt{11}-\sqrt{3}\right)}{\left(\sqrt{11}+\sqrt{3}\right)\left(\sqrt{11}-\sqrt{3}\right)}+\frac{4}{\sqrt{7}-\sqrt{3}}
Rationalize the denominator of \frac{8}{\sqrt{11}+\sqrt{3}} by multiplying numerator and denominator by \sqrt{11}-\sqrt{3}.
\sqrt{11}-\sqrt{7}-\frac{8\left(\sqrt{11}-\sqrt{3}\right)}{\left(\sqrt{11}\right)^{2}-\left(\sqrt{3}\right)^{2}}+\frac{4}{\sqrt{7}-\sqrt{3}}
Consider \left(\sqrt{11}+\sqrt{3}\right)\left(\sqrt{11}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\sqrt{11}-\sqrt{7}-\frac{8\left(\sqrt{11}-\sqrt{3}\right)}{11-3}+\frac{4}{\sqrt{7}-\sqrt{3}}
Square \sqrt{11}. Square \sqrt{3}.
\sqrt{11}-\sqrt{7}-\frac{8\left(\sqrt{11}-\sqrt{3}\right)}{8}+\frac{4}{\sqrt{7}-\sqrt{3}}
Subtract 3 from 11 to get 8.
\sqrt{11}-\sqrt{7}-\left(\sqrt{11}-\sqrt{3}\right)+\frac{4}{\sqrt{7}-\sqrt{3}}
Cancel out 8 and 8.
\sqrt{11}-\sqrt{7}-\sqrt{11}-\left(-\sqrt{3}\right)+\frac{4}{\sqrt{7}-\sqrt{3}}
To find the opposite of \sqrt{11}-\sqrt{3}, find the opposite of each term.
\sqrt{11}-\sqrt{7}-\sqrt{11}+\sqrt{3}+\frac{4}{\sqrt{7}-\sqrt{3}}
The opposite of -\sqrt{3} is \sqrt{3}.
-\sqrt{7}+\sqrt{3}+\frac{4}{\sqrt{7}-\sqrt{3}}
Combine \sqrt{11} and -\sqrt{11} to get 0.
-\sqrt{7}+\sqrt{3}+\frac{4\left(\sqrt{7}+\sqrt{3}\right)}{\left(\sqrt{7}-\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right)}
Rationalize the denominator of \frac{4}{\sqrt{7}-\sqrt{3}} by multiplying numerator and denominator by \sqrt{7}+\sqrt{3}.
-\sqrt{7}+\sqrt{3}+\frac{4\left(\sqrt{7}+\sqrt{3}\right)}{\left(\sqrt{7}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(\sqrt{7}-\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-\sqrt{7}+\sqrt{3}+\frac{4\left(\sqrt{7}+\sqrt{3}\right)}{7-3}
Square \sqrt{7}. Square \sqrt{3}.
-\sqrt{7}+\sqrt{3}+\frac{4\left(\sqrt{7}+\sqrt{3}\right)}{4}
Subtract 3 from 7 to get 4.
-\sqrt{7}+\sqrt{3}+\sqrt{7}+\sqrt{3}
Cancel out 4 and 4.
\sqrt{3}+\sqrt{3}
Combine -\sqrt{7} and \sqrt{7} to get 0.
2\sqrt{3}
Combine \sqrt{3} and \sqrt{3} to get 2\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}