Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{4\left(\sqrt{11}-\sqrt{7}\right)}{\left(\sqrt{11}+\sqrt{7}\right)\left(\sqrt{11}-\sqrt{7}\right)}-\frac{8}{\sqrt{11}+\sqrt{3}}+\frac{4}{\sqrt{7}-\sqrt{3}}
Rationalize the denominator of \frac{4}{\sqrt{11}+\sqrt{7}} by multiplying numerator and denominator by \sqrt{11}-\sqrt{7}.
\frac{4\left(\sqrt{11}-\sqrt{7}\right)}{\left(\sqrt{11}\right)^{2}-\left(\sqrt{7}\right)^{2}}-\frac{8}{\sqrt{11}+\sqrt{3}}+\frac{4}{\sqrt{7}-\sqrt{3}}
Consider \left(\sqrt{11}+\sqrt{7}\right)\left(\sqrt{11}-\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\left(\sqrt{11}-\sqrt{7}\right)}{11-7}-\frac{8}{\sqrt{11}+\sqrt{3}}+\frac{4}{\sqrt{7}-\sqrt{3}}
Square \sqrt{11}. Square \sqrt{7}.
\frac{4\left(\sqrt{11}-\sqrt{7}\right)}{4}-\frac{8}{\sqrt{11}+\sqrt{3}}+\frac{4}{\sqrt{7}-\sqrt{3}}
Subtract 7 from 11 to get 4.
\sqrt{11}-\sqrt{7}-\frac{8}{\sqrt{11}+\sqrt{3}}+\frac{4}{\sqrt{7}-\sqrt{3}}
Cancel out 4 and 4.
\sqrt{11}-\sqrt{7}-\frac{8\left(\sqrt{11}-\sqrt{3}\right)}{\left(\sqrt{11}+\sqrt{3}\right)\left(\sqrt{11}-\sqrt{3}\right)}+\frac{4}{\sqrt{7}-\sqrt{3}}
Rationalize the denominator of \frac{8}{\sqrt{11}+\sqrt{3}} by multiplying numerator and denominator by \sqrt{11}-\sqrt{3}.
\sqrt{11}-\sqrt{7}-\frac{8\left(\sqrt{11}-\sqrt{3}\right)}{\left(\sqrt{11}\right)^{2}-\left(\sqrt{3}\right)^{2}}+\frac{4}{\sqrt{7}-\sqrt{3}}
Consider \left(\sqrt{11}+\sqrt{3}\right)\left(\sqrt{11}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\sqrt{11}-\sqrt{7}-\frac{8\left(\sqrt{11}-\sqrt{3}\right)}{11-3}+\frac{4}{\sqrt{7}-\sqrt{3}}
Square \sqrt{11}. Square \sqrt{3}.
\sqrt{11}-\sqrt{7}-\frac{8\left(\sqrt{11}-\sqrt{3}\right)}{8}+\frac{4}{\sqrt{7}-\sqrt{3}}
Subtract 3 from 11 to get 8.
\sqrt{11}-\sqrt{7}-\left(\sqrt{11}-\sqrt{3}\right)+\frac{4}{\sqrt{7}-\sqrt{3}}
Cancel out 8 and 8.
\sqrt{11}-\sqrt{7}-\sqrt{11}-\left(-\sqrt{3}\right)+\frac{4}{\sqrt{7}-\sqrt{3}}
To find the opposite of \sqrt{11}-\sqrt{3}, find the opposite of each term.
\sqrt{11}-\sqrt{7}-\sqrt{11}+\sqrt{3}+\frac{4}{\sqrt{7}-\sqrt{3}}
The opposite of -\sqrt{3} is \sqrt{3}.
-\sqrt{7}+\sqrt{3}+\frac{4}{\sqrt{7}-\sqrt{3}}
Combine \sqrt{11} and -\sqrt{11} to get 0.
-\sqrt{7}+\sqrt{3}+\frac{4\left(\sqrt{7}+\sqrt{3}\right)}{\left(\sqrt{7}-\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right)}
Rationalize the denominator of \frac{4}{\sqrt{7}-\sqrt{3}} by multiplying numerator and denominator by \sqrt{7}+\sqrt{3}.
-\sqrt{7}+\sqrt{3}+\frac{4\left(\sqrt{7}+\sqrt{3}\right)}{\left(\sqrt{7}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(\sqrt{7}-\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-\sqrt{7}+\sqrt{3}+\frac{4\left(\sqrt{7}+\sqrt{3}\right)}{7-3}
Square \sqrt{7}. Square \sqrt{3}.
-\sqrt{7}+\sqrt{3}+\frac{4\left(\sqrt{7}+\sqrt{3}\right)}{4}
Subtract 3 from 7 to get 4.
-\sqrt{7}+\sqrt{3}+\sqrt{7}+\sqrt{3}
Cancel out 4 and 4.
\sqrt{3}+\sqrt{3}
Combine -\sqrt{7} and \sqrt{7} to get 0.
2\sqrt{3}
Combine \sqrt{3} and \sqrt{3} to get 2\sqrt{3}.