Skip to main content
Evaluate
Tick mark Image

Share

\frac{4}{\left(\sqrt{3}\right)^{2}}+\frac{1}{\left(\sin(60)\right)^{2}}-\left(\cos(45)\right)^{2}
Get the value of \cot(30) from trigonometric values table.
\frac{4}{3}+\frac{1}{\left(\sin(60)\right)^{2}}-\left(\cos(45)\right)^{2}
The square of \sqrt{3} is 3.
\frac{4}{3}+\frac{1}{\left(\frac{\sqrt{3}}{2}\right)^{2}}-\left(\cos(45)\right)^{2}
Get the value of \sin(60) from trigonometric values table.
\frac{4}{3}+\frac{1}{\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}}-\left(\cos(45)\right)^{2}
To raise \frac{\sqrt{3}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{4}{3}+\frac{2^{2}}{\left(\sqrt{3}\right)^{2}}-\left(\cos(45)\right)^{2}
Divide 1 by \frac{\left(\sqrt{3}\right)^{2}}{2^{2}} by multiplying 1 by the reciprocal of \frac{\left(\sqrt{3}\right)^{2}}{2^{2}}.
\frac{4}{3}+\frac{4}{\left(\sqrt{3}\right)^{2}}-\left(\cos(45)\right)^{2}
Calculate 2 to the power of 2 and get 4.
\frac{4}{3}+\frac{4}{3}-\left(\cos(45)\right)^{2}
The square of \sqrt{3} is 3.
\frac{8}{3}-\left(\cos(45)\right)^{2}
Add \frac{4}{3} and \frac{4}{3} to get \frac{8}{3}.
\frac{8}{3}-\left(\frac{\sqrt{2}}{2}\right)^{2}
Get the value of \cos(45) from trigonometric values table.
\frac{8}{3}-\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}
To raise \frac{\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{8}{3}-\frac{2}{2^{2}}
The square of \sqrt{2} is 2.
\frac{8}{3}-\frac{2}{4}
Calculate 2 to the power of 2 and get 4.
\frac{8}{3}-\frac{1}{2}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{13}{6}
Subtract \frac{1}{2} from \frac{8}{3} to get \frac{13}{6}.