Evaluate
\frac{3904795984}{976486736961}\approx 0.003998821
Factor
\frac{9901 \cdot 2 ^ {4} \cdot 157 ^ {2}}{3 ^ {3} \cdot 3307 ^ {3}} = 0.0039988213215802785
Share
Copied to clipboard
\frac{4\times 9.8596}{1.9842^{2}}\times 2\times 10^{-4}+\frac{8\times 3.14^{2}\times 0.9881}{1.9842^{3}}\times 0.0002
Calculate 3.14 to the power of 2 and get 9.8596.
\frac{39.4384}{1.9842^{2}}\times 2\times 10^{-4}+\frac{8\times 3.14^{2}\times 0.9881}{1.9842^{3}}\times 0.0002
Multiply 4 and 9.8596 to get 39.4384.
\frac{39.4384}{3.93704964}\times 2\times 10^{-4}+\frac{8\times 3.14^{2}\times 0.9881}{1.9842^{3}}\times 0.0002
Calculate 1.9842 to the power of 2 and get 3.93704964.
\frac{3943840000}{393704964}\times 2\times 10^{-4}+\frac{8\times 3.14^{2}\times 0.9881}{1.9842^{3}}\times 0.0002
Expand \frac{39.4384}{3.93704964} by multiplying both numerator and the denominator by 100000000.
\frac{985960000}{98426241}\times 2\times 10^{-4}+\frac{8\times 3.14^{2}\times 0.9881}{1.9842^{3}}\times 0.0002
Reduce the fraction \frac{3943840000}{393704964} to lowest terms by extracting and canceling out 4.
\frac{1971920000}{98426241}\times 10^{-4}+\frac{8\times 3.14^{2}\times 0.9881}{1.9842^{3}}\times 0.0002
Multiply \frac{985960000}{98426241} and 2 to get \frac{1971920000}{98426241}.
\frac{1971920000}{98426241}\times \frac{1}{10000}+\frac{8\times 3.14^{2}\times 0.9881}{1.9842^{3}}\times 0.0002
Calculate 10 to the power of -4 and get \frac{1}{10000}.
\frac{197192}{98426241}+\frac{8\times 3.14^{2}\times 0.9881}{1.9842^{3}}\times 0.0002
Multiply \frac{1971920000}{98426241} and \frac{1}{10000} to get \frac{197192}{98426241}.
\frac{197192}{98426241}+\frac{8\times 9.8596\times 0.9881}{1.9842^{3}}\times 0.0002
Calculate 3.14 to the power of 2 and get 9.8596.
\frac{197192}{98426241}+\frac{78.8768\times 0.9881}{1.9842^{3}}\times 0.0002
Multiply 8 and 9.8596 to get 78.8768.
\frac{197192}{98426241}+\frac{77.93816608}{1.9842^{3}}\times 0.0002
Multiply 78.8768 and 0.9881 to get 77.93816608.
\frac{197192}{98426241}+\frac{77.93816608}{7.811893895688}\times 0.0002
Calculate 1.9842 to the power of 3 and get 7.811893895688.
\frac{197192}{98426241}+\frac{77938166080000}{7811893895688}\times 0.0002
Expand \frac{77.93816608}{7.811893895688} by multiplying both numerator and the denominator by 1000000000000.
\frac{197192}{98426241}+\frac{9742270760000}{976486736961}\times 0.0002
Reduce the fraction \frac{77938166080000}{7811893895688} to lowest terms by extracting and canceling out 8.
\frac{197192}{98426241}+\frac{1948454152}{976486736961}
Multiply \frac{9742270760000}{976486736961} and 0.0002 to get \frac{1948454152}{976486736961}.
\frac{3904795984}{976486736961}
Add \frac{197192}{98426241} and \frac{1948454152}{976486736961} to get \frac{3904795984}{976486736961}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}