Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(4\sqrt{3}+4\right)\left(1-\sqrt{3}\right)}{\left(1+\sqrt{3}\right)\left(1-\sqrt{3}\right)}
Rationalize the denominator of \frac{4\sqrt{3}+4}{1+\sqrt{3}} by multiplying numerator and denominator by 1-\sqrt{3}.
\frac{\left(4\sqrt{3}+4\right)\left(1-\sqrt{3}\right)}{1^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(1+\sqrt{3}\right)\left(1-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4\sqrt{3}+4\right)\left(1-\sqrt{3}\right)}{1-3}
Square 1. Square \sqrt{3}.
\frac{\left(4\sqrt{3}+4\right)\left(1-\sqrt{3}\right)}{-2}
Subtract 3 from 1 to get -2.
\frac{4\sqrt{3}-4\left(\sqrt{3}\right)^{2}+4-4\sqrt{3}}{-2}
Apply the distributive property by multiplying each term of 4\sqrt{3}+4 by each term of 1-\sqrt{3}.
\frac{4\sqrt{3}-4\times 3+4-4\sqrt{3}}{-2}
The square of \sqrt{3} is 3.
\frac{4\sqrt{3}-12+4-4\sqrt{3}}{-2}
Multiply -4 and 3 to get -12.
\frac{4\sqrt{3}-8-4\sqrt{3}}{-2}
Add -12 and 4 to get -8.
\frac{-8}{-2}
Combine 4\sqrt{3} and -4\sqrt{3} to get 0.
4
Divide -8 by -2 to get 4.