Skip to main content
Verify
true
Tick mark Image

Similar Problems from Web Search

Share

4±\sqrt{-4^{2}-4\left(-3\right)\times 39}=4±\sqrt{-16+468}
Multiply both sides of the equation by -6.
4±\sqrt{-16-4\left(-3\right)\times 39}=4±\sqrt{-16+468}
Calculate 4 to the power of 2 and get 16.
4±\sqrt{-16-\left(-12\times 39\right)}=4±\sqrt{-16+468}
Multiply 4 and -3 to get -12.
4±\sqrt{-16-\left(-468\right)}=4±\sqrt{-16+468}
Multiply -12 and 39 to get -468.
4±\sqrt{-16+468}=4±\sqrt{-16+468}
The opposite of -468 is 468.
4±\sqrt{452}=4±\sqrt{-16+468}
Add -16 and 468 to get 452.
4±2\sqrt{113}=4±\sqrt{-16+468}
Factor 452=2^{2}\times 113. Rewrite the square root of the product \sqrt{2^{2}\times 113} as the product of square roots \sqrt{2^{2}}\sqrt{113}. Take the square root of 2^{2}.
4±2\sqrt{113}=4±\sqrt{452}
Add -16 and 468 to get 452.
4±2\sqrt{113}=4±2\sqrt{113}
Factor 452=2^{2}\times 113. Rewrite the square root of the product \sqrt{2^{2}\times 113} as the product of square roots \sqrt{2^{2}}\sqrt{113}. Take the square root of 2^{2}.
4±2\sqrt{113}-\left(4±2\sqrt{113}\right)=0
Subtract 4±2\sqrt{113} from both sides.
0=0
Combine 4±2\sqrt{113} and -\left(4±2\sqrt{113}\right) to get 0.
\text{true}
Compare 0 and 0.