Verify
true
Share
Copied to clipboard
4±\sqrt{-4^{2}-4\left(-3\right)\times 39}=4±\sqrt{-16+468}
Multiply both sides of the equation by -6.
4±\sqrt{-16-4\left(-3\right)\times 39}=4±\sqrt{-16+468}
Calculate 4 to the power of 2 and get 16.
4±\sqrt{-16-\left(-12\times 39\right)}=4±\sqrt{-16+468}
Multiply 4 and -3 to get -12.
4±\sqrt{-16-\left(-468\right)}=4±\sqrt{-16+468}
Multiply -12 and 39 to get -468.
4±\sqrt{-16+468}=4±\sqrt{-16+468}
The opposite of -468 is 468.
4±\sqrt{452}=4±\sqrt{-16+468}
Add -16 and 468 to get 452.
4±2\sqrt{113}=4±\sqrt{-16+468}
Factor 452=2^{2}\times 113. Rewrite the square root of the product \sqrt{2^{2}\times 113} as the product of square roots \sqrt{2^{2}}\sqrt{113}. Take the square root of 2^{2}.
4±2\sqrt{113}=4±\sqrt{452}
Add -16 and 468 to get 452.
4±2\sqrt{113}=4±2\sqrt{113}
Factor 452=2^{2}\times 113. Rewrite the square root of the product \sqrt{2^{2}\times 113} as the product of square roots \sqrt{2^{2}}\sqrt{113}. Take the square root of 2^{2}.
4±2\sqrt{113}-\left(4±2\sqrt{113}\right)=0
Subtract 4±2\sqrt{113} from both sides.
0=0
Combine 4±2\sqrt{113} and -\left(4±2\sqrt{113}\right) to get 0.
\text{true}
Compare 0 and 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}