Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{28+3}{7}-\frac{2\times 14+1}{14}+\frac{3\times 2+1}{2}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 15+1}{15}}
Multiply 4 and 7 to get 28.
\frac{\frac{31}{7}-\frac{2\times 14+1}{14}+\frac{3\times 2+1}{2}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 15+1}{15}}
Add 28 and 3 to get 31.
\frac{\frac{31}{7}-\frac{28+1}{14}+\frac{3\times 2+1}{2}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 15+1}{15}}
Multiply 2 and 14 to get 28.
\frac{\frac{31}{7}-\frac{29}{14}+\frac{3\times 2+1}{2}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 15+1}{15}}
Add 28 and 1 to get 29.
\frac{\frac{62}{14}-\frac{29}{14}+\frac{3\times 2+1}{2}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 15+1}{15}}
Least common multiple of 7 and 14 is 14. Convert \frac{31}{7} and \frac{29}{14} to fractions with denominator 14.
\frac{\frac{62-29}{14}+\frac{3\times 2+1}{2}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 15+1}{15}}
Since \frac{62}{14} and \frac{29}{14} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{33}{14}+\frac{3\times 2+1}{2}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 15+1}{15}}
Subtract 29 from 62 to get 33.
\frac{\frac{33}{14}+\frac{6+1}{2}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 15+1}{15}}
Multiply 3 and 2 to get 6.
\frac{\frac{33}{14}+\frac{7}{2}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 15+1}{15}}
Add 6 and 1 to get 7.
\frac{\frac{33}{14}+\frac{49}{14}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 15+1}{15}}
Least common multiple of 14 and 2 is 14. Convert \frac{33}{14} and \frac{7}{2} to fractions with denominator 14.
\frac{\frac{33+49}{14}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 15+1}{15}}
Since \frac{33}{14} and \frac{49}{14} have the same denominator, add them by adding their numerators.
\frac{\frac{82}{14}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 15+1}{15}}
Add 33 and 49 to get 82.
\frac{\frac{41}{7}}{\frac{6\times 3+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 15+1}{15}}
Reduce the fraction \frac{82}{14} to lowest terms by extracting and canceling out 2.
\frac{\frac{41}{7}}{\frac{18+2}{3}+\frac{5\times 9+5}{9}-\frac{10\times 15+1}{15}}
Multiply 6 and 3 to get 18.
\frac{\frac{41}{7}}{\frac{20}{3}+\frac{5\times 9+5}{9}-\frac{10\times 15+1}{15}}
Add 18 and 2 to get 20.
\frac{\frac{41}{7}}{\frac{20}{3}+\frac{45+5}{9}-\frac{10\times 15+1}{15}}
Multiply 5 and 9 to get 45.
\frac{\frac{41}{7}}{\frac{20}{3}+\frac{50}{9}-\frac{10\times 15+1}{15}}
Add 45 and 5 to get 50.
\frac{\frac{41}{7}}{\frac{60}{9}+\frac{50}{9}-\frac{10\times 15+1}{15}}
Least common multiple of 3 and 9 is 9. Convert \frac{20}{3} and \frac{50}{9} to fractions with denominator 9.
\frac{\frac{41}{7}}{\frac{60+50}{9}-\frac{10\times 15+1}{15}}
Since \frac{60}{9} and \frac{50}{9} have the same denominator, add them by adding their numerators.
\frac{\frac{41}{7}}{\frac{110}{9}-\frac{10\times 15+1}{15}}
Add 60 and 50 to get 110.
\frac{\frac{41}{7}}{\frac{110}{9}-\frac{150+1}{15}}
Multiply 10 and 15 to get 150.
\frac{\frac{41}{7}}{\frac{110}{9}-\frac{151}{15}}
Add 150 and 1 to get 151.
\frac{\frac{41}{7}}{\frac{550}{45}-\frac{453}{45}}
Least common multiple of 9 and 15 is 45. Convert \frac{110}{9} and \frac{151}{15} to fractions with denominator 45.
\frac{\frac{41}{7}}{\frac{550-453}{45}}
Since \frac{550}{45} and \frac{453}{45} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{41}{7}}{\frac{97}{45}}
Subtract 453 from 550 to get 97.
\frac{41}{7}\times \frac{45}{97}
Divide \frac{41}{7} by \frac{97}{45} by multiplying \frac{41}{7} by the reciprocal of \frac{97}{45}.
\frac{41\times 45}{7\times 97}
Multiply \frac{41}{7} times \frac{45}{97} by multiplying numerator times numerator and denominator times denominator.
\frac{1845}{679}
Do the multiplications in the fraction \frac{41\times 45}{7\times 97}.