Evaluate
\frac{311}{315}\approx 0.987301587
Factor
\frac{311}{3 ^ {2} \cdot 5 \cdot 7} = 0.9873015873015873
Share
Copied to clipboard
\frac{\frac{12+2}{3}-\frac{6\times 7+3}{7}-\left(-\frac{1\times 9+2}{9}\right)+\frac{5\times 21+10}{21}}{5}
Multiply 4 and 3 to get 12.
\frac{\frac{14}{3}-\frac{6\times 7+3}{7}-\left(-\frac{1\times 9+2}{9}\right)+\frac{5\times 21+10}{21}}{5}
Add 12 and 2 to get 14.
\frac{\frac{14}{3}-\frac{42+3}{7}-\left(-\frac{1\times 9+2}{9}\right)+\frac{5\times 21+10}{21}}{5}
Multiply 6 and 7 to get 42.
\frac{\frac{14}{3}-\frac{45}{7}-\left(-\frac{1\times 9+2}{9}\right)+\frac{5\times 21+10}{21}}{5}
Add 42 and 3 to get 45.
\frac{\frac{98}{21}-\frac{135}{21}-\left(-\frac{1\times 9+2}{9}\right)+\frac{5\times 21+10}{21}}{5}
Least common multiple of 3 and 7 is 21. Convert \frac{14}{3} and \frac{45}{7} to fractions with denominator 21.
\frac{\frac{98-135}{21}-\left(-\frac{1\times 9+2}{9}\right)+\frac{5\times 21+10}{21}}{5}
Since \frac{98}{21} and \frac{135}{21} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{37}{21}-\left(-\frac{1\times 9+2}{9}\right)+\frac{5\times 21+10}{21}}{5}
Subtract 135 from 98 to get -37.
\frac{-\frac{37}{21}-\left(-\frac{9+2}{9}\right)+\frac{5\times 21+10}{21}}{5}
Multiply 1 and 9 to get 9.
\frac{-\frac{37}{21}-\left(-\frac{11}{9}\right)+\frac{5\times 21+10}{21}}{5}
Add 9 and 2 to get 11.
\frac{-\frac{37}{21}+\frac{11}{9}+\frac{5\times 21+10}{21}}{5}
The opposite of -\frac{11}{9} is \frac{11}{9}.
\frac{-\frac{111}{63}+\frac{77}{63}+\frac{5\times 21+10}{21}}{5}
Least common multiple of 21 and 9 is 63. Convert -\frac{37}{21} and \frac{11}{9} to fractions with denominator 63.
\frac{\frac{-111+77}{63}+\frac{5\times 21+10}{21}}{5}
Since -\frac{111}{63} and \frac{77}{63} have the same denominator, add them by adding their numerators.
\frac{-\frac{34}{63}+\frac{5\times 21+10}{21}}{5}
Add -111 and 77 to get -34.
\frac{-\frac{34}{63}+\frac{105+10}{21}}{5}
Multiply 5 and 21 to get 105.
\frac{-\frac{34}{63}+\frac{115}{21}}{5}
Add 105 and 10 to get 115.
\frac{-\frac{34}{63}+\frac{345}{63}}{5}
Least common multiple of 63 and 21 is 63. Convert -\frac{34}{63} and \frac{115}{21} to fractions with denominator 63.
\frac{\frac{-34+345}{63}}{5}
Since -\frac{34}{63} and \frac{345}{63} have the same denominator, add them by adding their numerators.
\frac{\frac{311}{63}}{5}
Add -34 and 345 to get 311.
\frac{311}{63\times 5}
Express \frac{\frac{311}{63}}{5} as a single fraction.
\frac{311}{315}
Multiply 63 and 5 to get 315.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}