Solve for g
g=2
Share
Copied to clipboard
\frac{4\times 2+1}{2}=g\times \frac{1}{\frac{4}{9}}
Variable g cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by g.
\frac{8+1}{2}=g\times \frac{1}{\frac{4}{9}}
Multiply 4 and 2 to get 8.
\frac{9}{2}=g\times \frac{1}{\frac{4}{9}}
Add 8 and 1 to get 9.
\frac{9}{2}=g\times 1\times \frac{9}{4}
Divide 1 by \frac{4}{9} by multiplying 1 by the reciprocal of \frac{4}{9}.
\frac{9}{2}=g\times \frac{9}{4}
Multiply 1 and \frac{9}{4} to get \frac{9}{4}.
g\times \frac{9}{4}=\frac{9}{2}
Swap sides so that all variable terms are on the left hand side.
g=\frac{9}{2}\times \frac{4}{9}
Multiply both sides by \frac{4}{9}, the reciprocal of \frac{9}{4}.
g=\frac{9\times 4}{2\times 9}
Multiply \frac{9}{2} times \frac{4}{9} by multiplying numerator times numerator and denominator times denominator.
g=\frac{4}{2}
Cancel out 9 in both numerator and denominator.
g=2
Divide 4 by 2 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}