Skip to main content
Verify
false
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{4^{2}}=4^{3-5}\text{ and }4^{3-5}=\frac{1}{4}
Rewrite 4^{5} as 4^{3}\times 4^{2}. Cancel out 4^{3} in both numerator and denominator.
\frac{1}{16}=4^{3-5}\text{ and }4^{3-5}=\frac{1}{4}
Calculate 4 to the power of 2 and get 16.
\frac{1}{16}=4^{-2}\text{ and }4^{3-5}=\frac{1}{4}
Subtract 5 from 3 to get -2.
\frac{1}{16}=\frac{1}{16}\text{ and }4^{3-5}=\frac{1}{4}
Calculate 4 to the power of -2 and get \frac{1}{16}.
\text{true}\text{ and }4^{3-5}=\frac{1}{4}
Compare \frac{1}{16} and \frac{1}{16}.
\text{true}\text{ and }4^{-2}=\frac{1}{4}
Subtract 5 from 3 to get -2.
\text{true}\text{ and }\frac{1}{16}=\frac{1}{4}
Calculate 4 to the power of -2 and get \frac{1}{16}.
\text{true}\text{ and }\frac{1}{16}=\frac{4}{16}
Least common multiple of 16 and 4 is 16. Convert \frac{1}{16} and \frac{1}{4} to fractions with denominator 16.
\text{true}\text{ and }\text{false}
Compare \frac{1}{16} and \frac{4}{16}.
\text{false}
The conjunction of \text{true} and \text{false} is \text{false}.