Evaluate
-\frac{13}{9}\approx -1.444444444
Factor
-\frac{13}{9} = -1\frac{4}{9} = -1.4444444444444444
Share
Copied to clipboard
\frac{16+6\times 4-27}{4^{2}-8\times 4+7}
Calculate 4 to the power of 2 and get 16.
\frac{16+24-27}{4^{2}-8\times 4+7}
Multiply 6 and 4 to get 24.
\frac{40-27}{4^{2}-8\times 4+7}
Add 16 and 24 to get 40.
\frac{13}{4^{2}-8\times 4+7}
Subtract 27 from 40 to get 13.
\frac{13}{16-8\times 4+7}
Calculate 4 to the power of 2 and get 16.
\frac{13}{16-32+7}
Multiply 8 and 4 to get 32.
\frac{13}{-16+7}
Subtract 32 from 16 to get -16.
\frac{13}{-9}
Add -16 and 7 to get -9.
-\frac{13}{9}
Fraction \frac{13}{-9} can be rewritten as -\frac{13}{9} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}