Solve for x
x=-\frac{500}{147}i\approx -3.401360544i
Share
Copied to clipboard
\frac{\frac{4}{4}}{2.4}\times 32=5.6i\times 0.7x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
\frac{1}{2.4}\times 32=5.6i\times 0.7x
Divide 4 by 4 to get 1.
\frac{10}{24}\times 32=5.6i\times 0.7x
Expand \frac{1}{2.4} by multiplying both numerator and the denominator by 10.
\frac{5}{12}\times 32=5.6i\times 0.7x
Reduce the fraction \frac{10}{24} to lowest terms by extracting and canceling out 2.
\frac{5\times 32}{12}=5.6i\times 0.7x
Express \frac{5}{12}\times 32 as a single fraction.
\frac{160}{12}=5.6i\times 0.7x
Multiply 5 and 32 to get 160.
\frac{40}{3}=5.6i\times 0.7x
Reduce the fraction \frac{160}{12} to lowest terms by extracting and canceling out 4.
\frac{40}{3}=3.92ix
Multiply 5.6i and 0.7 to get 3.92i.
3.92ix=\frac{40}{3}
Swap sides so that all variable terms are on the left hand side.
x=\frac{\frac{40}{3}}{3.92i}
Divide both sides by 3.92i.
x=\frac{\frac{40}{3}i}{3.92i^{2}}
Multiply both numerator and denominator of \frac{\frac{40}{3}}{3.92i} by imaginary unit i.
x=\frac{\frac{40}{3}i}{-3.92}
By definition, i^{2} is -1. Calculate the denominator.
x=-\frac{500}{147}i
Divide \frac{40}{3}i by -3.92 to get -\frac{500}{147}i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}