Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{4}{3}}{\sqrt{9-\frac{16}{9}}}
Calculate \frac{4}{3} to the power of 2 and get \frac{16}{9}.
\frac{\frac{4}{3}}{\sqrt{\frac{81}{9}-\frac{16}{9}}}
Convert 9 to fraction \frac{81}{9}.
\frac{\frac{4}{3}}{\sqrt{\frac{81-16}{9}}}
Since \frac{81}{9} and \frac{16}{9} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{4}{3}}{\sqrt{\frac{65}{9}}}
Subtract 16 from 81 to get 65.
\frac{\frac{4}{3}}{\frac{\sqrt{65}}{\sqrt{9}}}
Rewrite the square root of the division \sqrt{\frac{65}{9}} as the division of square roots \frac{\sqrt{65}}{\sqrt{9}}.
\frac{\frac{4}{3}}{\frac{\sqrt{65}}{3}}
Calculate the square root of 9 and get 3.
\frac{4\times 3}{3\sqrt{65}}
Divide \frac{4}{3} by \frac{\sqrt{65}}{3} by multiplying \frac{4}{3} by the reciprocal of \frac{\sqrt{65}}{3}.
\frac{4}{\sqrt{65}}
Cancel out 3 in both numerator and denominator.
\frac{4\sqrt{65}}{\left(\sqrt{65}\right)^{2}}
Rationalize the denominator of \frac{4}{\sqrt{65}} by multiplying numerator and denominator by \sqrt{65}.
\frac{4\sqrt{65}}{65}
The square of \sqrt{65} is 65.