Solve for x
x=6z-4
z\neq 0
Solve for z
z=\frac{x+4}{6}
x\neq -4
Share
Copied to clipboard
4+x=6z
Multiply both sides of the equation by 3z.
x=6z-4
Subtract 4 from both sides.
4+x=6z
Variable z cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3z.
6z=4+x
Swap sides so that all variable terms are on the left hand side.
6z=x+4
The equation is in standard form.
\frac{6z}{6}=\frac{x+4}{6}
Divide both sides by 6.
z=\frac{x+4}{6}
Dividing by 6 undoes the multiplication by 6.
z=\frac{x}{6}+\frac{2}{3}
Divide 4+x by 6.
z=\frac{x}{6}+\frac{2}{3}\text{, }z\neq 0
Variable z cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}