Solve for x
x\leq 2
Graph
Share
Copied to clipboard
3\left(4+x\right)+6\geq 2\times 4\left(x+1\right)
Multiply both sides of the equation by 6, the least common multiple of 2,3. Since 6 is positive, the inequality direction remains the same.
12+3x+6\geq 2\times 4\left(x+1\right)
Use the distributive property to multiply 3 by 4+x.
18+3x\geq 2\times 4\left(x+1\right)
Add 12 and 6 to get 18.
18+3x\geq 8\left(x+1\right)
Multiply 2 and 4 to get 8.
18+3x\geq 8x+8
Use the distributive property to multiply 8 by x+1.
18+3x-8x\geq 8
Subtract 8x from both sides.
18-5x\geq 8
Combine 3x and -8x to get -5x.
-5x\geq 8-18
Subtract 18 from both sides.
-5x\geq -10
Subtract 18 from 8 to get -10.
x\leq \frac{-10}{-5}
Divide both sides by -5. Since -5 is negative, the inequality direction is changed.
x\leq 2
Divide -10 by -5 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}