Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(4+i\right)\left(4+i\right)}{\left(4-i\right)\left(4+i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 4+i.
\frac{\left(4+i\right)\left(4+i\right)}{4^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4+i\right)\left(4+i\right)}{17}
By definition, i^{2} is -1. Calculate the denominator.
\frac{4\times 4+4i+4i+i^{2}}{17}
Multiply complex numbers 4+i and 4+i like you multiply binomials.
\frac{4\times 4+4i+4i-1}{17}
By definition, i^{2} is -1.
\frac{16+4i+4i-1}{17}
Do the multiplications in 4\times 4+4i+4i-1.
\frac{16-1+\left(4+4\right)i}{17}
Combine the real and imaginary parts in 16+4i+4i-1.
\frac{15+8i}{17}
Do the additions in 16-1+\left(4+4\right)i.
\frac{15}{17}+\frac{8}{17}i
Divide 15+8i by 17 to get \frac{15}{17}+\frac{8}{17}i.
Re(\frac{\left(4+i\right)\left(4+i\right)}{\left(4-i\right)\left(4+i\right)})
Multiply both numerator and denominator of \frac{4+i}{4-i} by the complex conjugate of the denominator, 4+i.
Re(\frac{\left(4+i\right)\left(4+i\right)}{4^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(4+i\right)\left(4+i\right)}{17})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{4\times 4+4i+4i+i^{2}}{17})
Multiply complex numbers 4+i and 4+i like you multiply binomials.
Re(\frac{4\times 4+4i+4i-1}{17})
By definition, i^{2} is -1.
Re(\frac{16+4i+4i-1}{17})
Do the multiplications in 4\times 4+4i+4i-1.
Re(\frac{16-1+\left(4+4\right)i}{17})
Combine the real and imaginary parts in 16+4i+4i-1.
Re(\frac{15+8i}{17})
Do the additions in 16-1+\left(4+4\right)i.
Re(\frac{15}{17}+\frac{8}{17}i)
Divide 15+8i by 17 to get \frac{15}{17}+\frac{8}{17}i.
\frac{15}{17}
The real part of \frac{15}{17}+\frac{8}{17}i is \frac{15}{17}.