Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(4+4i\right)\left(2-i\right)}{\left(2+i\right)\left(2-i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 2-i.
\frac{\left(4+4i\right)\left(2-i\right)}{2^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4+4i\right)\left(2-i\right)}{5}
By definition, i^{2} is -1. Calculate the denominator.
\frac{4\times 2+4\left(-i\right)+4i\times 2+4\left(-1\right)i^{2}}{5}
Multiply complex numbers 4+4i and 2-i like you multiply binomials.
\frac{4\times 2+4\left(-i\right)+4i\times 2+4\left(-1\right)\left(-1\right)}{5}
By definition, i^{2} is -1.
\frac{8-4i+8i+4}{5}
Do the multiplications in 4\times 2+4\left(-i\right)+4i\times 2+4\left(-1\right)\left(-1\right).
\frac{8+4+\left(-4+8\right)i}{5}
Combine the real and imaginary parts in 8-4i+8i+4.
\frac{12+4i}{5}
Do the additions in 8+4+\left(-4+8\right)i.
\frac{12}{5}+\frac{4}{5}i
Divide 12+4i by 5 to get \frac{12}{5}+\frac{4}{5}i.
Re(\frac{\left(4+4i\right)\left(2-i\right)}{\left(2+i\right)\left(2-i\right)})
Multiply both numerator and denominator of \frac{4+4i}{2+i} by the complex conjugate of the denominator, 2-i.
Re(\frac{\left(4+4i\right)\left(2-i\right)}{2^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(4+4i\right)\left(2-i\right)}{5})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{4\times 2+4\left(-i\right)+4i\times 2+4\left(-1\right)i^{2}}{5})
Multiply complex numbers 4+4i and 2-i like you multiply binomials.
Re(\frac{4\times 2+4\left(-i\right)+4i\times 2+4\left(-1\right)\left(-1\right)}{5})
By definition, i^{2} is -1.
Re(\frac{8-4i+8i+4}{5})
Do the multiplications in 4\times 2+4\left(-i\right)+4i\times 2+4\left(-1\right)\left(-1\right).
Re(\frac{8+4+\left(-4+8\right)i}{5})
Combine the real and imaginary parts in 8-4i+8i+4.
Re(\frac{12+4i}{5})
Do the additions in 8+4+\left(-4+8\right)i.
Re(\frac{12}{5}+\frac{4}{5}i)
Divide 12+4i by 5 to get \frac{12}{5}+\frac{4}{5}i.
\frac{12}{5}
The real part of \frac{12}{5}+\frac{4}{5}i is \frac{12}{5}.