Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(4+3i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1+i.
\frac{\left(4+3i\right)\left(1+i\right)}{1^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4+3i\right)\left(1+i\right)}{2}
By definition, i^{2} is -1. Calculate the denominator.
\frac{4\times 1+4i+3i\times 1+3i^{2}}{2}
Multiply complex numbers 4+3i and 1+i like you multiply binomials.
\frac{4\times 1+4i+3i\times 1+3\left(-1\right)}{2}
By definition, i^{2} is -1.
\frac{4+4i+3i-3}{2}
Do the multiplications in 4\times 1+4i+3i\times 1+3\left(-1\right).
\frac{4-3+\left(4+3\right)i}{2}
Combine the real and imaginary parts in 4+4i+3i-3.
\frac{1+7i}{2}
Do the additions in 4-3+\left(4+3\right)i.
\frac{1}{2}+\frac{7}{2}i
Divide 1+7i by 2 to get \frac{1}{2}+\frac{7}{2}i.
Re(\frac{\left(4+3i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)})
Multiply both numerator and denominator of \frac{4+3i}{1-i} by the complex conjugate of the denominator, 1+i.
Re(\frac{\left(4+3i\right)\left(1+i\right)}{1^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(4+3i\right)\left(1+i\right)}{2})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{4\times 1+4i+3i\times 1+3i^{2}}{2})
Multiply complex numbers 4+3i and 1+i like you multiply binomials.
Re(\frac{4\times 1+4i+3i\times 1+3\left(-1\right)}{2})
By definition, i^{2} is -1.
Re(\frac{4+4i+3i-3}{2})
Do the multiplications in 4\times 1+4i+3i\times 1+3\left(-1\right).
Re(\frac{4-3+\left(4+3\right)i}{2})
Combine the real and imaginary parts in 4+4i+3i-3.
Re(\frac{1+7i}{2})
Do the additions in 4-3+\left(4+3\right)i.
Re(\frac{1}{2}+\frac{7}{2}i)
Divide 1+7i by 2 to get \frac{1}{2}+\frac{7}{2}i.
\frac{1}{2}
The real part of \frac{1}{2}+\frac{7}{2}i is \frac{1}{2}.