Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(4+2i\right)\left(3-5i\right)}{\left(3+5i\right)\left(3-5i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 3-5i.
\frac{\left(4+2i\right)\left(3-5i\right)}{3^{2}-5^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4+2i\right)\left(3-5i\right)}{34}
By definition, i^{2} is -1. Calculate the denominator.
\frac{4\times 3+4\times \left(-5i\right)+2i\times 3+2\left(-5\right)i^{2}}{34}
Multiply complex numbers 4+2i and 3-5i like you multiply binomials.
\frac{4\times 3+4\times \left(-5i\right)+2i\times 3+2\left(-5\right)\left(-1\right)}{34}
By definition, i^{2} is -1.
\frac{12-20i+6i+10}{34}
Do the multiplications in 4\times 3+4\times \left(-5i\right)+2i\times 3+2\left(-5\right)\left(-1\right).
\frac{12+10+\left(-20+6\right)i}{34}
Combine the real and imaginary parts in 12-20i+6i+10.
\frac{22-14i}{34}
Do the additions in 12+10+\left(-20+6\right)i.
\frac{11}{17}-\frac{7}{17}i
Divide 22-14i by 34 to get \frac{11}{17}-\frac{7}{17}i.
Re(\frac{\left(4+2i\right)\left(3-5i\right)}{\left(3+5i\right)\left(3-5i\right)})
Multiply both numerator and denominator of \frac{4+2i}{3+5i} by the complex conjugate of the denominator, 3-5i.
Re(\frac{\left(4+2i\right)\left(3-5i\right)}{3^{2}-5^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(4+2i\right)\left(3-5i\right)}{34})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{4\times 3+4\times \left(-5i\right)+2i\times 3+2\left(-5\right)i^{2}}{34})
Multiply complex numbers 4+2i and 3-5i like you multiply binomials.
Re(\frac{4\times 3+4\times \left(-5i\right)+2i\times 3+2\left(-5\right)\left(-1\right)}{34})
By definition, i^{2} is -1.
Re(\frac{12-20i+6i+10}{34})
Do the multiplications in 4\times 3+4\times \left(-5i\right)+2i\times 3+2\left(-5\right)\left(-1\right).
Re(\frac{12+10+\left(-20+6\right)i}{34})
Combine the real and imaginary parts in 12-20i+6i+10.
Re(\frac{22-14i}{34})
Do the additions in 12+10+\left(-20+6\right)i.
Re(\frac{11}{17}-\frac{7}{17}i)
Divide 22-14i by 34 to get \frac{11}{17}-\frac{7}{17}i.
\frac{11}{17}
The real part of \frac{11}{17}-\frac{7}{17}i is \frac{11}{17}.