Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(4+2i\right)\left(2+7i\right)}{\left(2-7i\right)\left(2+7i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 2+7i.
\frac{\left(4+2i\right)\left(2+7i\right)}{2^{2}-7^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4+2i\right)\left(2+7i\right)}{53}
By definition, i^{2} is -1. Calculate the denominator.
\frac{4\times 2+4\times \left(7i\right)+2i\times 2+2\times 7i^{2}}{53}
Multiply complex numbers 4+2i and 2+7i like you multiply binomials.
\frac{4\times 2+4\times \left(7i\right)+2i\times 2+2\times 7\left(-1\right)}{53}
By definition, i^{2} is -1.
\frac{8+28i+4i-14}{53}
Do the multiplications in 4\times 2+4\times \left(7i\right)+2i\times 2+2\times 7\left(-1\right).
\frac{8-14+\left(28+4\right)i}{53}
Combine the real and imaginary parts in 8+28i+4i-14.
\frac{-6+32i}{53}
Do the additions in 8-14+\left(28+4\right)i.
-\frac{6}{53}+\frac{32}{53}i
Divide -6+32i by 53 to get -\frac{6}{53}+\frac{32}{53}i.
Re(\frac{\left(4+2i\right)\left(2+7i\right)}{\left(2-7i\right)\left(2+7i\right)})
Multiply both numerator and denominator of \frac{4+2i}{2-7i} by the complex conjugate of the denominator, 2+7i.
Re(\frac{\left(4+2i\right)\left(2+7i\right)}{2^{2}-7^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(4+2i\right)\left(2+7i\right)}{53})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{4\times 2+4\times \left(7i\right)+2i\times 2+2\times 7i^{2}}{53})
Multiply complex numbers 4+2i and 2+7i like you multiply binomials.
Re(\frac{4\times 2+4\times \left(7i\right)+2i\times 2+2\times 7\left(-1\right)}{53})
By definition, i^{2} is -1.
Re(\frac{8+28i+4i-14}{53})
Do the multiplications in 4\times 2+4\times \left(7i\right)+2i\times 2+2\times 7\left(-1\right).
Re(\frac{8-14+\left(28+4\right)i}{53})
Combine the real and imaginary parts in 8+28i+4i-14.
Re(\frac{-6+32i}{53})
Do the additions in 8-14+\left(28+4\right)i.
Re(-\frac{6}{53}+\frac{32}{53}i)
Divide -6+32i by 53 to get -\frac{6}{53}+\frac{32}{53}i.
-\frac{6}{53}
The real part of -\frac{6}{53}+\frac{32}{53}i is -\frac{6}{53}.