Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(4+2i\right)\left(1+2i\right)}{\left(1-2i\right)\left(1+2i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1+2i.
\frac{\left(4+2i\right)\left(1+2i\right)}{1^{2}-2^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4+2i\right)\left(1+2i\right)}{5}
By definition, i^{2} is -1. Calculate the denominator.
\frac{4\times 1+4\times \left(2i\right)+2i\times 1+2\times 2i^{2}}{5}
Multiply complex numbers 4+2i and 1+2i like you multiply binomials.
\frac{4\times 1+4\times \left(2i\right)+2i\times 1+2\times 2\left(-1\right)}{5}
By definition, i^{2} is -1.
\frac{4+8i+2i-4}{5}
Do the multiplications in 4\times 1+4\times \left(2i\right)+2i\times 1+2\times 2\left(-1\right).
\frac{4-4+\left(8+2\right)i}{5}
Combine the real and imaginary parts in 4+8i+2i-4.
\frac{10i}{5}
Do the additions in 4-4+\left(8+2\right)i.
2i
Divide 10i by 5 to get 2i.
Re(\frac{\left(4+2i\right)\left(1+2i\right)}{\left(1-2i\right)\left(1+2i\right)})
Multiply both numerator and denominator of \frac{4+2i}{1-2i} by the complex conjugate of the denominator, 1+2i.
Re(\frac{\left(4+2i\right)\left(1+2i\right)}{1^{2}-2^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(4+2i\right)\left(1+2i\right)}{5})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{4\times 1+4\times \left(2i\right)+2i\times 1+2\times 2i^{2}}{5})
Multiply complex numbers 4+2i and 1+2i like you multiply binomials.
Re(\frac{4\times 1+4\times \left(2i\right)+2i\times 1+2\times 2\left(-1\right)}{5})
By definition, i^{2} is -1.
Re(\frac{4+8i+2i-4}{5})
Do the multiplications in 4\times 1+4\times \left(2i\right)+2i\times 1+2\times 2\left(-1\right).
Re(\frac{4-4+\left(8+2\right)i}{5})
Combine the real and imaginary parts in 4+8i+2i-4.
Re(\frac{10i}{5})
Do the additions in 4-4+\left(8+2\right)i.
Re(2i)
Divide 10i by 5 to get 2i.
0
The real part of 2i is 0.