Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(4+2i\right)\left(1-3i\right)}{\left(1+3i\right)\left(1-3i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1-3i.
\frac{\left(4+2i\right)\left(1-3i\right)}{1^{2}-3^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4+2i\right)\left(1-3i\right)}{10}
By definition, i^{2} is -1. Calculate the denominator.
\frac{4\times 1+4\times \left(-3i\right)+2i\times 1+2\left(-3\right)i^{2}}{10}
Multiply complex numbers 4+2i and 1-3i like you multiply binomials.
\frac{4\times 1+4\times \left(-3i\right)+2i\times 1+2\left(-3\right)\left(-1\right)}{10}
By definition, i^{2} is -1.
\frac{4-12i+2i+6}{10}
Do the multiplications in 4\times 1+4\times \left(-3i\right)+2i\times 1+2\left(-3\right)\left(-1\right).
\frac{4+6+\left(-12+2\right)i}{10}
Combine the real and imaginary parts in 4-12i+2i+6.
\frac{10-10i}{10}
Do the additions in 4+6+\left(-12+2\right)i.
1-i
Divide 10-10i by 10 to get 1-i.
Re(\frac{\left(4+2i\right)\left(1-3i\right)}{\left(1+3i\right)\left(1-3i\right)})
Multiply both numerator and denominator of \frac{4+2i}{1+3i} by the complex conjugate of the denominator, 1-3i.
Re(\frac{\left(4+2i\right)\left(1-3i\right)}{1^{2}-3^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(4+2i\right)\left(1-3i\right)}{10})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{4\times 1+4\times \left(-3i\right)+2i\times 1+2\left(-3\right)i^{2}}{10})
Multiply complex numbers 4+2i and 1-3i like you multiply binomials.
Re(\frac{4\times 1+4\times \left(-3i\right)+2i\times 1+2\left(-3\right)\left(-1\right)}{10})
By definition, i^{2} is -1.
Re(\frac{4-12i+2i+6}{10})
Do the multiplications in 4\times 1+4\times \left(-3i\right)+2i\times 1+2\left(-3\right)\left(-1\right).
Re(\frac{4+6+\left(-12+2\right)i}{10})
Combine the real and imaginary parts in 4-12i+2i+6.
Re(\frac{10-10i}{10})
Do the additions in 4+6+\left(-12+2\right)i.
Re(1-i)
Divide 10-10i by 10 to get 1-i.
1
The real part of 1-i is 1.