Evaluate
\frac{\sqrt{2}\left(\sqrt{3}+1\right)}{4}\approx 0.965925826
Quiz
Arithmetic
5 problems similar to:
\frac { 4 + 2 - ( \sqrt { 3 } - 1 ) ^ { 2 } } { 4 \sqrt { 2 } }
Share
Copied to clipboard
\frac{6-\left(\sqrt{3}-1\right)^{2}}{4\sqrt{2}}
Add 4 and 2 to get 6.
\frac{6-\left(\left(\sqrt{3}\right)^{2}-2\sqrt{3}+1\right)}{4\sqrt{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-1\right)^{2}.
\frac{6-\left(3-2\sqrt{3}+1\right)}{4\sqrt{2}}
The square of \sqrt{3} is 3.
\frac{6-\left(4-2\sqrt{3}\right)}{4\sqrt{2}}
Add 3 and 1 to get 4.
\frac{6-4+2\sqrt{3}}{4\sqrt{2}}
To find the opposite of 4-2\sqrt{3}, find the opposite of each term.
\frac{2+2\sqrt{3}}{4\sqrt{2}}
Subtract 4 from 6 to get 2.
\frac{\left(2+2\sqrt{3}\right)\sqrt{2}}{4\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{2+2\sqrt{3}}{4\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\left(2+2\sqrt{3}\right)\sqrt{2}}{4\times 2}
The square of \sqrt{2} is 2.
\frac{\left(2+2\sqrt{3}\right)\sqrt{2}}{8}
Multiply 4 and 2 to get 8.
\frac{2\sqrt{2}+2\sqrt{3}\sqrt{2}}{8}
Use the distributive property to multiply 2+2\sqrt{3} by \sqrt{2}.
\frac{2\sqrt{2}+2\sqrt{6}}{8}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}