Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{6-\left(\sqrt{3}-1\right)^{2}}{4\sqrt{2}}
Add 4 and 2 to get 6.
\frac{6-\left(\left(\sqrt{3}\right)^{2}-2\sqrt{3}+1\right)}{4\sqrt{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-1\right)^{2}.
\frac{6-\left(3-2\sqrt{3}+1\right)}{4\sqrt{2}}
The square of \sqrt{3} is 3.
\frac{6-\left(4-2\sqrt{3}\right)}{4\sqrt{2}}
Add 3 and 1 to get 4.
\frac{6-4+2\sqrt{3}}{4\sqrt{2}}
To find the opposite of 4-2\sqrt{3}, find the opposite of each term.
\frac{2+2\sqrt{3}}{4\sqrt{2}}
Subtract 4 from 6 to get 2.
\frac{\left(2+2\sqrt{3}\right)\sqrt{2}}{4\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{2+2\sqrt{3}}{4\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\left(2+2\sqrt{3}\right)\sqrt{2}}{4\times 2}
The square of \sqrt{2} is 2.
\frac{\left(2+2\sqrt{3}\right)\sqrt{2}}{8}
Multiply 4 and 2 to get 8.
\frac{2\sqrt{2}+2\sqrt{3}\sqrt{2}}{8}
Use the distributive property to multiply 2+2\sqrt{3} by \sqrt{2}.
\frac{2\sqrt{2}+2\sqrt{6}}{8}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.