Evaluate
\frac{\sqrt{3}}{2}-1\approx -0.133974596
Quiz
Arithmetic
\frac { 4 + ( \sqrt { 3 } - 1 ) ^ { 2 } - 6 } { 2 \times 2 \times ( \sqrt { 3 } + 1 ) }
Share
Copied to clipboard
\frac{4+\left(\sqrt{3}\right)^{2}-2\sqrt{3}+1-6}{2\times 2\left(\sqrt{3}+1\right)}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-1\right)^{2}.
\frac{4+3-2\sqrt{3}+1-6}{2\times 2\left(\sqrt{3}+1\right)}
The square of \sqrt{3} is 3.
\frac{4+4-2\sqrt{3}-6}{2\times 2\left(\sqrt{3}+1\right)}
Add 3 and 1 to get 4.
\frac{8-2\sqrt{3}-6}{2\times 2\left(\sqrt{3}+1\right)}
Add 4 and 4 to get 8.
\frac{2-2\sqrt{3}}{2\times 2\left(\sqrt{3}+1\right)}
Subtract 6 from 8 to get 2.
\frac{2-2\sqrt{3}}{4\left(\sqrt{3}+1\right)}
Multiply 2 and 2 to get 4.
\frac{2-2\sqrt{3}}{4\sqrt{3}+4}
Use the distributive property to multiply 4 by \sqrt{3}+1.
\frac{\left(2-2\sqrt{3}\right)\left(4\sqrt{3}-4\right)}{\left(4\sqrt{3}+4\right)\left(4\sqrt{3}-4\right)}
Rationalize the denominator of \frac{2-2\sqrt{3}}{4\sqrt{3}+4} by multiplying numerator and denominator by 4\sqrt{3}-4.
\frac{\left(2-2\sqrt{3}\right)\left(4\sqrt{3}-4\right)}{\left(4\sqrt{3}\right)^{2}-4^{2}}
Consider \left(4\sqrt{3}+4\right)\left(4\sqrt{3}-4\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2-2\sqrt{3}\right)\left(4\sqrt{3}-4\right)}{4^{2}\left(\sqrt{3}\right)^{2}-4^{2}}
Expand \left(4\sqrt{3}\right)^{2}.
\frac{\left(2-2\sqrt{3}\right)\left(4\sqrt{3}-4\right)}{16\left(\sqrt{3}\right)^{2}-4^{2}}
Calculate 4 to the power of 2 and get 16.
\frac{\left(2-2\sqrt{3}\right)\left(4\sqrt{3}-4\right)}{16\times 3-4^{2}}
The square of \sqrt{3} is 3.
\frac{\left(2-2\sqrt{3}\right)\left(4\sqrt{3}-4\right)}{48-4^{2}}
Multiply 16 and 3 to get 48.
\frac{\left(2-2\sqrt{3}\right)\left(4\sqrt{3}-4\right)}{48-16}
Calculate 4 to the power of 2 and get 16.
\frac{\left(2-2\sqrt{3}\right)\left(4\sqrt{3}-4\right)}{32}
Subtract 16 from 48 to get 32.
\frac{16\sqrt{3}-8-8\left(\sqrt{3}\right)^{2}}{32}
Use the distributive property to multiply 2-2\sqrt{3} by 4\sqrt{3}-4 and combine like terms.
\frac{16\sqrt{3}-8-8\times 3}{32}
The square of \sqrt{3} is 3.
\frac{16\sqrt{3}-8-24}{32}
Multiply -8 and 3 to get -24.
\frac{16\sqrt{3}-32}{32}
Subtract 24 from -8 to get -32.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}