Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{4+\left(\sqrt{3}\right)^{2}-2\sqrt{3}+1-6}{2\times 2\left(\sqrt{3}+1\right)}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-1\right)^{2}.
\frac{4+3-2\sqrt{3}+1-6}{2\times 2\left(\sqrt{3}+1\right)}
The square of \sqrt{3} is 3.
\frac{4+4-2\sqrt{3}-6}{2\times 2\left(\sqrt{3}+1\right)}
Add 3 and 1 to get 4.
\frac{8-2\sqrt{3}-6}{2\times 2\left(\sqrt{3}+1\right)}
Add 4 and 4 to get 8.
\frac{2-2\sqrt{3}}{2\times 2\left(\sqrt{3}+1\right)}
Subtract 6 from 8 to get 2.
\frac{2-2\sqrt{3}}{4\left(\sqrt{3}+1\right)}
Multiply 2 and 2 to get 4.
\frac{2-2\sqrt{3}}{4\sqrt{3}+4}
Use the distributive property to multiply 4 by \sqrt{3}+1.
\frac{\left(2-2\sqrt{3}\right)\left(4\sqrt{3}-4\right)}{\left(4\sqrt{3}+4\right)\left(4\sqrt{3}-4\right)}
Rationalize the denominator of \frac{2-2\sqrt{3}}{4\sqrt{3}+4} by multiplying numerator and denominator by 4\sqrt{3}-4.
\frac{\left(2-2\sqrt{3}\right)\left(4\sqrt{3}-4\right)}{\left(4\sqrt{3}\right)^{2}-4^{2}}
Consider \left(4\sqrt{3}+4\right)\left(4\sqrt{3}-4\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2-2\sqrt{3}\right)\left(4\sqrt{3}-4\right)}{4^{2}\left(\sqrt{3}\right)^{2}-4^{2}}
Expand \left(4\sqrt{3}\right)^{2}.
\frac{\left(2-2\sqrt{3}\right)\left(4\sqrt{3}-4\right)}{16\left(\sqrt{3}\right)^{2}-4^{2}}
Calculate 4 to the power of 2 and get 16.
\frac{\left(2-2\sqrt{3}\right)\left(4\sqrt{3}-4\right)}{16\times 3-4^{2}}
The square of \sqrt{3} is 3.
\frac{\left(2-2\sqrt{3}\right)\left(4\sqrt{3}-4\right)}{48-4^{2}}
Multiply 16 and 3 to get 48.
\frac{\left(2-2\sqrt{3}\right)\left(4\sqrt{3}-4\right)}{48-16}
Calculate 4 to the power of 2 and get 16.
\frac{\left(2-2\sqrt{3}\right)\left(4\sqrt{3}-4\right)}{32}
Subtract 16 from 48 to get 32.
\frac{16\sqrt{3}-8-8\left(\sqrt{3}\right)^{2}}{32}
Use the distributive property to multiply 2-2\sqrt{3} by 4\sqrt{3}-4 and combine like terms.
\frac{16\sqrt{3}-8-8\times 3}{32}
The square of \sqrt{3} is 3.
\frac{16\sqrt{3}-8-24}{32}
Multiply -8 and 3 to get -24.
\frac{16\sqrt{3}-32}{32}
Subtract 24 from -8 to get -32.