Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(4+\sqrt{5}\right)\left(\sqrt{3}-\sqrt{5}\right)}{\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{3}-\sqrt{5}\right)}
Rationalize the denominator of \frac{4+\sqrt{5}}{\sqrt{3}+\sqrt{5}} by multiplying numerator and denominator by \sqrt{3}-\sqrt{5}.
\frac{\left(4+\sqrt{5}\right)\left(\sqrt{3}-\sqrt{5}\right)}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{3}-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4+\sqrt{5}\right)\left(\sqrt{3}-\sqrt{5}\right)}{3-5}
Square \sqrt{3}. Square \sqrt{5}.
\frac{\left(4+\sqrt{5}\right)\left(\sqrt{3}-\sqrt{5}\right)}{-2}
Subtract 5 from 3 to get -2.
\frac{4\sqrt{3}-4\sqrt{5}+\sqrt{5}\sqrt{3}-\left(\sqrt{5}\right)^{2}}{-2}
Apply the distributive property by multiplying each term of 4+\sqrt{5} by each term of \sqrt{3}-\sqrt{5}.
\frac{4\sqrt{3}-4\sqrt{5}+\sqrt{15}-\left(\sqrt{5}\right)^{2}}{-2}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
\frac{4\sqrt{3}-4\sqrt{5}+\sqrt{15}-5}{-2}
The square of \sqrt{5} is 5.
\frac{-4\sqrt{3}+4\sqrt{5}-\sqrt{15}+5}{2}
Multiply both numerator and denominator by -1.