Evaluate
-\frac{\sqrt{15}}{2}+2\sqrt{5}+\frac{5}{2}-2\sqrt{3}\approx 1.571542667
Share
Copied to clipboard
\frac{\left(4+\sqrt{5}\right)\left(\sqrt{3}-\sqrt{5}\right)}{\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{3}-\sqrt{5}\right)}
Rationalize the denominator of \frac{4+\sqrt{5}}{\sqrt{3}+\sqrt{5}} by multiplying numerator and denominator by \sqrt{3}-\sqrt{5}.
\frac{\left(4+\sqrt{5}\right)\left(\sqrt{3}-\sqrt{5}\right)}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{3}-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4+\sqrt{5}\right)\left(\sqrt{3}-\sqrt{5}\right)}{3-5}
Square \sqrt{3}. Square \sqrt{5}.
\frac{\left(4+\sqrt{5}\right)\left(\sqrt{3}-\sqrt{5}\right)}{-2}
Subtract 5 from 3 to get -2.
\frac{4\sqrt{3}-4\sqrt{5}+\sqrt{5}\sqrt{3}-\left(\sqrt{5}\right)^{2}}{-2}
Apply the distributive property by multiplying each term of 4+\sqrt{5} by each term of \sqrt{3}-\sqrt{5}.
\frac{4\sqrt{3}-4\sqrt{5}+\sqrt{15}-\left(\sqrt{5}\right)^{2}}{-2}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
\frac{4\sqrt{3}-4\sqrt{5}+\sqrt{15}-5}{-2}
The square of \sqrt{5} is 5.
\frac{-4\sqrt{3}+4\sqrt{5}-\sqrt{15}+5}{2}
Multiply both numerator and denominator by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}